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Abstract

We model search in settings where decision makers know what can be

found but not where to find it. A searcher faces a set of choices arranged by an

observable attribute. Each period, she either selects a choice and pays a cost

to learn about its quality, or she concludes search to take her best discovery

to date. She knows that similar choices have similar qualities and uses this to

guide her search. We identify robustly optimal search policies with a simple

structure. Search is directional, recall is never invoked, there is a threshold

stopping rule, and the policy at each history depends only on a simple index.

1 Introduction

Making an original discovery (e.g., tackling an open problem or developing a

breakthrough innovation) is a process of trial and error in the face of stark un-

certainty. Researchers, agencies and firms learn from their past successes and

dead-ends when deciding which approach to try next. They also infer from their

attempts whether worthwhile discoveries even exist and decide when to give up.

On the other hand, searchers attempting rediscovery know that worthwhile

discoveries exist, even if they do not know where to find them. A student tack-

ling a homework problem faces much of the same uncertainty as the researcher

who first solved it. However, the student knows that the problem has a solution

and relies only on material covered in class, whereas the researcher had no such

guarantees. Analogously, a non-nuclear state faces significant uncertainty when
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trying to develop a weapon, but they know that other programs — starting with

the Manhattan project — succeeded in the same endeavor.

Intuitively, the process of rediscovery seems simpler than original discovery.

For example, while comparing OpenAI to its imitators, OpenAI’s CEO Sam Alt-

man argues:

It’s really easy to copy something you know works. One of the reasons

people don’t talk about why it’s so easy is that you have the conviction

to know that it’s possible. And so after a research lab does something,

even if you don’t know exactly how they did it, it’s — I won’t say easy,

but — doable to go off and copy it [...] What is really hard [...] is the

repeated ability to go off and do something new and totally unproven...

A lot of organizations talk about the ability to do this. There are very

few that do, across any field.1

We develop a stylized model of rediscovery and characterize the optimal search

process. Our model crystallizes why the process of rediscovery may feel “easy” in

many respects. While original discovery involves learning where to look and in-

ferring what can be found, rediscovery only involves the former. With original

discovery, a bad outcome can be a sign to stop searching: perhaps all feasible ap-

proaches lead nowhere. But with rediscovery, a bad outcome is always a sign to

continue, albeit with a sufficiently different approach, because good outcomes ex-

ist. It is also a sign for the searcher to aspire for more than before stopping, because

there are fewer approaches left to try.

Understanding rediscovery may be of interest to economists, because it ap-

pears to be a ubiquitous and important driver of innovation. Firms that develop

novel technologies, such as self-driving cars or new AI algorithms, often keep their

methods as trade secrets instead of publicizing them or filing a patent. Competi-

tors who learn only that such inventions are feasible may embark on their own

R&D process to at least partially recreate the innovating firm’s success. In the

terms of this example, we ask: how do these competitors go about searching the

space of possible designs? At what point do they conclude search and release their

own novel variants of the original innovation?

1This quote is from the Sam Altman episode of 20VC with Harry Stebbings.
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Similar questions have been considered in the management and entrepreneur-

ship literature on the behavioral theory of the firm. In a seminal book, (Cyert and

March, 1963) describe problemistic search by managers which is triggered by events

like “failure to achieve the profit goal” or “innovation by a competitor.” Subse-

quent authors have suggested that this sort of problemistic search by firms often

happens over rugged landscapes, meaning that the mapping from firm’s choices to

outcomes is complex and unpredictable (Levinthal, 1997; Billinger et al., 2014;

Callander, 2011; Callander et al., 2022). Motivated by this literature, we conceive

of rediscovery as problemistic search over rugged landscapes. Whereas much of

the economics literature has focused on how social learning across firms affects

innovation over a rugged landscape, we adapt Malladi (2022) to capture the inno-

vation process within a rational, forward-looking firm.

Model and Results In our model, there is a continuum of choices between 0 and

1 that have unknown payoffs. A searcher can learn the payoff to any given choice

at a cost. Each period she decides whether to continue searching, and if so, which

choice to learn about next. She eventually stops to take the best choice she had

discovered so far.

Crucially, the searcher knows that there exists some choice which achieves a

certain target payoff (e.g., that it is possible to design an invention of a given qual-

ity), but she does not know which. We interpret this as capturing rediscovery: the

searcher knows with certainty, perhaps by seeing a predecessor’s success, that a

good discovery is possible, but she does not know a priori where to find it. The

searcher also knows that the mapping from options to payoffs is Lipschitz contin-

uous with a known Lipschitz constant. This assumption captures the idea that the

searcher explores a rugged landscape, as she entertains a rich set of possibilities

about the shape of mapping from options to payoffs. The assumption simultane-

ously captures learning from past failures and successes through trial and error.

The searcher’s past discoveries guide where she looks next, as continuity implies

that proximate choices yield similar payoffs.

The searcher’s utility upon concluding search is the payoff of her best discovery

minus the sum of her accumulated search costs. We assume that the searcher fol-

lows a plan that, at every history, maximizes her worst-case utility upon concluding

search. That is, she searches in a way that is robust to the shape of the complex
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and unpredictable rugged landscape. At each history, and for every plan of search,

she evaluates this worst case over the possible shapes of the mapping from choices

to payoffs, knowing only that this mapping must be Lipschitz continuous, pass

through the points she had previously discovered, and attain the benchmark pay-

off somewhere.

We find an optimal search policy that is simple in many ways.

First, the searcher follows a threshold stopping rule, meaning she stops if the

payoff she discovers exceeds that period’s threshold and continues otherwise. More-

over, these thresholds increase with time: the knowledge that good discoveries ex-

ist somewhere causes the searcher to become emboldened rather than discouraged

by bad discoveries.

Next, search proceeds from left to right, although the searcher is free to look

anywhere in the search space at any time. The knowledge that good discoveries ex-

ist makes search a process of elimination. Search can be performed methodically,

ruling out unfruitful regions of the search space and honing in on the location of

more promising choices.

Third, the searcher has perfect recall but never invokes it. She always selects

the last option she had discovered rather than returning to a previous discovery

she had made.

Finally, while search happens in a non-stationary environment, the optimal

search policy depends only on a simple index. We define the search window at a

given history to be the set of choices which can potentially achieve the benchmark

quality that the searcher would ideally rediscover. Both the optimal search and

stopping rule are pinned down by the length of the search window.

None of these properties hold for the optimal policies identified in Malladi

(2022), which studied search in a similar setting but when good discoveries are not

guaranteed to exist. The comparison illustrates how rediscovery is procedurally

simpler than search for original discovery.

Related Literature Our model contributes to the literature on search theory.

Early papers treat search as a pure stopping problem (McCall, 1970; Rothschild,

1974). Weitzman (1979) considers ordered search over a set of independent but not

identically distributed items, where searchers can select which item to explore at

each history and when to stop.
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Relaxing independence to allow cross-item learning is notoriously difficult, and

a solution is known only in a special case of conditionally independent items

(Adam, 2001). Callander (2011) and Garfagnini and Strulovici (2016) capture

richer learning by modeling the mapping from items to payoffs as the realized path

of a Brownian motion. They, and a subsequent literature, study ordered search by

a sequence of short-lived searchers.2 By contrast, our model follows Malladi (2022)

in solving for forward-looking ordered search by a long-lived searcher.3

The Brownian framework has also been used to capture learning in settings be-

yond sequential ordered search, which is the focus of our paper. Notably, Urgun

and Yariv (2024) and Wong (2025) study optimal contiguous search and experi-

mentation over a Brownian path, where searchers choose how quickly to explore.

By contrast, we study a searcher who can freely choose where to explore each pe-

riod. Bardhi (2024) and Bardhi and Bobkova (2023) study optimal information ac-

quisition (by a single agent or by delegation to several agents, respectively) about

a complex project with correlated attributes. Where these models are static, we

study a dynamic model in which optimal sequential search is markedly different

from simultaneous search.

Our paper is also related to the topics of bandits and optimization in computer

science and operations research (Lattimore and Szepesvári, 2020; Hansen et al.,

1992). A key difference is that we study rational—forward-looking and dynam-

ically consistent—searchers. Moreover, our searchers face a stopping problem,

which affects optimal exploration.

2 Model

There is a continuum of items arranged along the interval S ≡ [0,1] ⊂ R. Let Q ⊂
[0,1]→ R be the set of potential quality indices—mappings from the search space

to a measure of quality. There is some true quality index q ∈Q, so each item x ∈ S
has a quality q(x) ∈ [0,1].

There is an agent who knows Q but not the true quality index. She can learn

the quality of items in [0,1] through costly search. This way, she narrows down

2See Callander and Matouschek (2019); Callander et al. (2022); Carnehl and Schneider (2025).
3In particular, we study sequentially robust search policies. For other recent perspectives on

robustness and dynamics, see Li et al. (2024) and Auster et al. (2024).

5



the set of candidate true quality indices in Q.

In each period, t = 0,1,2,3 . . ., the agent takes one of two kinds of actions. She

either explores a new item xt ∈ [0,1] to learn its quality, q(xt). Or she concludes

her search, xt = ∅, and adopts the highest quality item that she had discovered so

far, including an outside option of quality zero.

Formally, let ht = {(xi , zi)}t−1
i=0 be the time t partial history when the agent has not

yet concluded search, with zi = q(xi). Let H denote the set of all partial histories.

Let Xht be the set of items that were explored at ht. Let z∗h0
= 0 be the outside

option, and for t ≥ 1, z∗ht = max{0, z0, . . . , zt−1}. If xi ∈ Xht is such that zi = z∗ht , then

xi is a best item at ht.
A quality index q̃ ∈ Q is consistent at ht if q̃(xi) = zi for all i = 0, . . . , t − 1. Let

Qht ⊂Q be the set of consistent quality indices at ht.

We assume the following throughout:

Assumption 1. Q is the set of all L-Lipschitz continuous mappings q : [0,1]→ R

such that q(x) = 1 for some x ∈ [0,1].

In essence, the agent knows little about the shape of the true quality index. She

knows that proximate items in [0,1] cannot be too different in quality. She also

knows that there exists some item of at least a certain quality, so search may be

worthwhile. But she does not know a priori where to find such an item. We call

this known achievable quality the quality standard and normalize it to 1. Items

that achieve the quality standard are targets.

2.1 Payoffs

The agent’s benefit to adopting item x is q(x). The agent’s cost of exploring item x

in any period is c > 0. The agent’s total payoff at history ht+1 ∈ H̃ such that xt = ∅ is

given by:

p(ht+1) = z∗ht+1
− c · t.

That is, when an agent stops at history ht, she will adopt an item of quality z∗ht+1
.
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2.2 Strategies and Policies

A strategy of the agent is a deterministic mapping σ : H →
{
[0,1]∪{∅}

}
. A strategy σ

eventually terminates if for all h ∈ H and q̃ ∈ Qh, σ reaches a terminal history from

h when q = q̃. We restrict attention to the set of all strategies Σ that eventually

terminate.

We denote by h+1
q (σ ) the history that follows h if the agent adopts policy σ and

the quality index is q, i.e.

h+1
q (σ ) = h∪

{(
σ (h),q(σ (h))

)}
,

and similarly h+2
q (σ ), h+3

q (σ ), etc. The set of reachable histories for a given qual-

ity index q is then Hσ
q = {h0, (h0)+1

q , (h0)+2
q , . . . }.4 We denote by Hσ ⊂ H the set of

histories that strategy σ can reach along her decision tree (i.e., for some q ∈ Q)

starting from the empty history. Formally, Hσ = {Hσ
q : q ∈Q}. A search policy σ |D is

a restriction of σ to some domain D ⊃ Hσ . A search policy contains sufficient in-

formation to describe how search unfolds and when it stops for any q ∈Q, because

it at least specifies actions for reachable histories. A search policy terminates if, for

any q there exists h ∈Hσ
q such that σ (h) = ∅. Such a history h is called terminal.

2.3 Objective

To capture the unpredictability about the shape of the true quality index (i.e, the

idea of rugged landscapes), we take the view that the agent does not have a prior

over Q. She seeks a strategy that maximizes the eventual payoff that she is guar-

anteed, starting from any history and regardless of which consistent quality index

at that history is realized.

Under a strategy σ ∈ Σ and starting from a history h, a quality index q ∈Qh in-

duces a terminal history hσq and its corresponding terminal payoff p(hσq ). A strategy

σ ∗ is optimal if at the empty history h = h0

σ ∗ ∈ argmax
σ∈Σ

{
min
q∈Q

p(hσq )
}
.

4We drop the dependence on σ when the strategy is clear from the context.
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Similarly, a search policy σ ∗|D is optimal if it can be extended to a strategy σ ∗ that

satisfies the above condition.

2.4 Dynamic Consistency

The agent can be thought of as choosing a fully contingent plan at time zero that

maximizes her worst-case eventual payoff upon stopping. A natural question is:

would the agent stick to her ex-ante optimal plan at every later history even if she

were given the chance then to revise it?

Definition 1. A policy σ is dynamically consistent if at all histories h ∈Hσ

σ ∈ argmax
σ∈Σ

{
min
q∈Qh

p
(
hσq

)}
A dynamically consistent strategy is also optimal, as Definition 1 holds, in par-

ticular, at the empty history. In addition to being optimal, a dynamically consistent

policy maximizes the agent’s worst-case eventual payoff after any reachable his-

tory, where worst-case is taken over the consistent quality indices at that history.

In words, an agent following a dynamically consistent policy would not revise it

at any reachable history, even if given the chance.

Optimality and dynamic consistency coincide in models that assume Bayesian

updating and subjective expected utility, but the equivalence need not hold in

preference models with ambiguity aversion.5 For example, Auster et al. (2024)

study a stopping problem in the context of information acquisition with ambi-

guity. They find an optimal policy that is dynamically inconsistent, exhibiting

non-monotonicity in beliefs and randomized stopping.

On the other hand, Epstein and Schneider (2003) show that prior-by-prior up-

dating of the decision maker’s beliefs and rectangularity of the set of priors ensures

dynamic consistency. These conditions hold in our model, taking the set of priors

to be set of dirac measures over the space of consistent quality indices at some his-

tory and the set of posteriors as the dirac measures over consistent quality indices

at a subsequent history.6

5See Hanany and Klibanoff (2009) for a characterization of update rules for which dynamic
consistency holds in models with ambiguity aversion.

6Rectangularity requires that any combination of marginal beliefs with any conditional proba-
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To capture rational behavior where the agent is not in conflict with her future

self, we look for dynamically consistent policies.

3 An Optimal Search Policy

In this section we characterize an optimal search policy in closed form. Our main

result shows that, even though the set of feasible policies for the agent is rich, and

histories can be quite complex, there exist optimal policies that take a fairly simple

form.

3.1 Simple Policies

We begin by introducing certain classes of simple search policies.

Definition 2. A policy σ is a (left-to-right) directional policy if for every h ∈ Hσ ,

either σ (h) = ∅ or σ (h) > x for all x ∈ Xh.

In words, a directional policy is one where the agent searches along one di-

rection in the search space rather than bouncing back and forth. Note that fixed

search direction might reasonably capture a shopper walking though the aisles of

a grocery store or a pharmaceutical company experimenting incrementally with

drug dosages. Taking such examples as motivation, some models assume direc-

tionality as a natural constraint on the space of search strategies (e.g., Arbatskaya

(2007); Urgun and Yariv (2024); Wong (2025)).

Definition 3. A policy σ is a threshold policy if, for every non-terminal history

h ∈Hσ , there exists a τh such that σ (h+1
q ) = ∅ if and only if z∗

h+1
q
≥ τh.

A policy is a threshold policy if, prior to searching, the agent has a threshold

in mind such that if search yields a quality exceeding that threshold she will con-

clude search, and she will otherwise continue searching. While threshold stopping

rules are typically optimal in simple search models where agents take independent

draws from a known distribution, they need not be optimal when there is learning.

For example, an agent may stop after a sufficiently bad draw if this discourages her

bility distribution is a plausible prior. Marginal beliefs in our model are Dirac measures, so every
such combination is itself a Dirac measure.
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about the prospect of making good discoveries (e.g., see Rothschild (1978); Malladi

(2022); Urgun and Yariv (2024)).

Definition 4. A policy σ ignores past discoveries if σ (ht) = ∅ implies z∗ht = zt−1, i.e.

the agent always takes the last item discovered

In the model we assume the agent has perfect recall and always takes the high-

est quality item discovered to date. Therefore a strategy can only ignore past dis-

coveries if the agent continues searching until her best discovery was her last.7

Recall can be valuable in contexts with learning, as bad draws can cast previous

good discoveries in better light (e.g., see Malladi (2022); Urgun and Yariv (2024)).

Next, note that histories are complex and their dimensionality increases with

time. Optimal policies may depend intricately on the sequence of past realiza-

tions. Here, we define a class of policies that, instead, depend on a simple one-

dimensional state variable of any history.

To that end, we introduce the notion of a search window at history h:

Sh ≡
{
x ∈ [0,1]

∣∣∣ ∃q ∈Qh s.t. q(x) = 1
}
.

The search window is the set of items x which are targets under some consistent

quality index q ∈ Qh. Alternatively, if we denote by qh : [0,1] → R the upper-

envelope of feasible quality indices at history h, then Sh is the set of items x for

which qh(x) ≥ 1.

The search window shrinks with additional searches, so Sh+1
q
⊆ Sh for any q ∈

Qh.8 At any history h where (x,z) ∈ h and z < 1, the open interval of length 2(1−z)
L

centered at x lies outside of the Sh. More generally, at history h = {(x0, z0), . . . , (xt, zt)},

Sh = [0,1]−
t⋃

j=0

(
xj −

(1− zj)
L

,xj +
(1− zj)

L

)
.

This is depicted in Figure 1.

7Note that having the threshold property does not imply that the agent ignores past discoveries.
She can, for example, stop regardless of the outcome of her second search (i.e., a threshold stopping
rule with a threshold of zero) and take the first discovery if her second one is worse.

8Observe that the set of feasible quality indices shrinks with additional searches, i.e., Qh+1
q
⊆Qh,

and therefore qh ≥ qh+1
q

everywhere.
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Figure 1: The red line represents the search window. The solid black line instead
represents qht , the upper envelope of qualities given the current history.

Let lh ≡ ||Sh||, i.e., the lebesgue measure of the search window, for all h ∈H .

Definition 5. A policy σ is an index policy if σ is measurable with respect to the

lebesgue measure of the search window on Hσ .

Index strategies are those which depend on histories only through the length

of the search window. This is particularly attractive as the unique histories grow

instead exponentially in the number of searches. Optimal search behavior can

be fully characterized in terms of a single-dimensional “sufficient statistic” of the

exponentially-large state space.

3.2 Main Result

Our main result is that:

Theorem 1. There exists an optimal policy which is directional, threshold, index and
ignores the past. Furthermore, this policy is dynamically consistent.

The remainder of this section is dedicated to constructing such a policy explicitly.

We fix a Lipschitz constant L = 1 for ease of notation.

An ordered search history is a history h where the search window is an interval of

the form [a,1] for some a ∈ [0,1]. Figure 1 shows search windows at three histories:

the first two are ordered search histories, because Sh0
and Sh1

are intervals that

contain the endpoint 1. The third history is not an ordered search history, as Sh2
is

disconnected.
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We define a search policy σL→R in which the agent explores S from left to

right and stops whenever she makes a discovery exceeding an increasing, history-

dependent threshold. To this end, we introduce two auxilliary functions.

Let N : [0,1]2→N be defined as follows:

N (c, l) ≡


0 if c ∈

(
1− l

2 ,1
]
,

1 if c ∈
(
l
2 ,1− l

2

]
,

n if c ∈
(

l
n(n+1) ,

l
n(n−1)

]
.

(1)

Roughly, N maps search costs and the length of a search window to the maximum

number of searches that σL→R makes for any q ∈ Q. In keeping with this interpre-

tation, N is decreasing in costs. Next, when costs of search are sufficiently low, N

is increasing with interval length: more space left to explore means more searches

might be needed to discover a good quality item. But when costs are sufficiently

high, N is decreasing with interval length increases: more space left to explore

discourages the agent from exploring at all.

When N (c, l) , 0, define φ : [0,1]→R as

φ(l) = 1− l
2N (c, l)

− N (c, l)− 1
2

c (2)

The function φ maps the length of a search window to a quality threshold that is

used to define the stopping region in σL→R. It is straightforward to check that φ

is decreasing. As the search window grows larger, more search is potentially re-

quired to find a good outcome. Therefore, the agent is willing to conclude search

for lower quality discoveries. When the remaining space to be seached is small,

further search is likely to secure items close to the benchmark quality, so the

threshold for stopping is higher.

Definition 6. The left-to-right search policy σL→R : HσL→R → ∆{S ∪∅} is given by

σL→R(h) =

∅ if z∗h ≥ φ(lh)− c,
1− lh + 1−φ(lh) otherwise,

for all h ∈HσL→R .
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1

σL→R(h) 1

φ(lh)
c

c

kk +2ck +4c

Figure 2: Visualizing σL→R at some ordered search history h, where the search
window is given by the solid red line.

Figure 2 shows that σL→R has a simple geometric characterization at any or-

dered search history h. Let k ≤ 2c be the largest real number such that the search

window Sh can be partitioned in balls of diameter k,k + 2c,k + 4c, . . . . The number

of such balls is N (c, lh). Order these balls from the largest to the smallest in the

search window. The left-to-right policy searches at the center of the largest ball at

history h and stops if and only if q(σL→R(h)) attains a value of at least the peak of

the corresponding triangle.

Although σL→R is well-defined at all histories, the left-to-right policy stops at

the first history that is not ordered.

Lemma 1. For any q ∈ Q and non-terminal h ∈ HσL→R , exactly one of the following
conditions is satisfied:

1. h+1
q (σL→R) is a terminal history, or

2. h+1
q (σL→R) is an ordered search history.

The proof of this result, together with all other omitted proofs, is in Appendix A.

Figure 3 gives intuition for Lemma 1. Suppose search reveals that q(x) > φ(l), as

in Figure 3a. The history following this observation is no longer an ordered search
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history, but σL→R stops here. Instead, suppose that the agent observes a quality

q(x) lower than the threshold, as in Figure 3b. Then, the history that follows is an

ordered search history, and σL→R determines what to do next.

x

q

S1
1

q(x)

φ(l)

x1− l 1

(a)

x

q

S1
1

q(x)

φ(l)

x1− l 1

(b)

Figure 3

Proposition 1. The left-to-right policy σL→R is directional, threshold, index, and ig-
nores past discoveries.

From the definition of σL→R, it immediately follows that this is a threshold and

index policy.

By Lemma 1, a non-terminal, reachable history is an ordered search history as

well. As shown in Figure 3b, such a history has a smaller search window than the

one before it. Because σL→R always searches inside the shrinking search window

of ordered search histories on path, it is directional.
Because φ is decreasing in the length of the search window, the stopping thresh-

old increases on path. Therefore, the agent ignores past discoveries, as she only stops

if she exceeds an ever-higher target.

Theorem 2. σL→R is an optimal, dynamically consistent search policy.

We discuss the intuition behind Theorem 2 in Section 4 and Section 5, while a

formal proof is in Appendix A.
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3.3 Discussion

The optimal search policy bears some resemblance to the observations made in the

literature on problemistic search and rugged landscapes.

First, we find that the agent is never discouraged by a poor payoff draw, because

she knows good discoveries exist. By contrast, she becomes more ambitious and

sets a higher stopping threshold for her next search. Therefore, the agent always

takes the last item she had discovered when she finally stops. The idea that agents

attempting rediscovery are not easily discouraged corresponds with the observa-

tion by Cyert and March (1963) that, in problemistic search by firms and managers,

“[so] long as the problem is not solved, search will continue.” This contrasts with the

behavior characterized in the literature on reference points and aspiration forma-

tion (e.g. see Dalton et al. (2018), Selten (1998), Karandikar et al. (1998)), where

unrealized aspirations negatively affect utility and are revised downward. With re-

discovery, the quality standard is known to be achievable, so aspirations are never

revised.

On the other hand, the agent in our model does not begin to explore the space

unless the quality standard lies sufficiently higher than the status quo. It reflects

the finding by Baum and Dahlin (2007) that “[performance] below aspirations [...]
leads decision makers to initiate experimentation to identify new ways of doing things
and new things to do, while satisfactory performance does not.”

4 Analysis of the Two Period Case

We begin by solving the model for costs at which the agent would never search

more than twice. This special case of the general problem illustrates how the agent

hedges against uncertainty over the shape of the mapping by her choice of initial

search location. It also illustrates for what quality realizations the agent continues

or stops, highlighting the key tradeoff between the quality and informativeness of

discoveries. Extending the ideas developed here, Section 5 solves the general case

where the agent may face lower costs and search many times.
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4.1 Relevant Costs

First, we identify a range of costs for which the agent searches at least once and

most twice under any quality index q ∈Q.

Claim 1. If c ∈ (1
4 ,

1
2 ), the agent searches at least once and at most twice in any

optimal search policy, for every q ∈Q.

Proof. If the agent explores item 1/2 and stops, then her payoff is at least 1/2−c > 0

for any q ∈Q. Therefore, the agent searches at least once.

Next note that if the agent searches item 1/4 and next searches item 3/4, she

can guarantee herself a payoff of at least 3/4 − 2c. Therefore, a lower bound on

the agent’s payoff if she explores twice is 3/4− 2c. An upper bound on the agent’s

payoff if she explores k ≥ 3 times is 1−kc. Because 1/4 < c, we have 1−kc ≤ 1−3c <

3/4−2c. Therefore, the agent never searches more than twice in an optimal search

policy.

Henceforth in this section we assume c ∈ (1
4 ,

1
2 ).

4.2 Bifurcation Risk

An agent faces bifurcation risk if she is at a history where the search window con-

sists of two disjoint intervals. This happens if her initial search, x, is of sufficiently

high quality, i.e., q(x) ≥max{x,1−x}, but is below the quality standard, i.e., q(x) < 1.

A discovery of this quality leaves open the possibility that targets exist either to

the left or right of the initial search; see the left panel of Figure 4.

Claim 2. An optimal search policy concludes when the agent faces bifurcation

risk.

Proof. Suppose the agent faces bifurcation risk after searching at x. Let

ql(y) =

q(x), if y ≤ x

min{q(x) + y − x,1}, if y > x.

Note that ql is feasible at this history. If q = ql , the agent’s payoff if she searches

to the left of x and then concludes is q(x)− 2c < q(x)− c. If she searches to the left

16



1
2

x 1

1

ql

qr qr

1
2

x 1

1

Figure 4: The agent in the first figure explores x and faces bifurcation risk. Given
what she knows, it is possible that target locations exist either exclusively to the
left (e.g., if q = ql) or right of her initial search (e.g., if q = qr), and she guesses the
wrong side to search next. The agent in the second figure does not face bifurcation
risk. Due to the Lipschitz constraint, any feasible q must lie on or below the dashed
black line. Therefore, target locations must exist exclusively near the right end of
the search space.

of x, then at 1 and then concludes, she gets a payoff of 1 − 3c < 1/2 − c ≤ q(x) − c.
Therefore, stopping at x improves on the agent’s worst case payoff to searching to

the left of x, regardless of what she does afterward. Symmetrically, concluding

search is also better than exploring to the right of x.

When facing bifurcation risk, the agent finds herself at a crossroads when de-

ciding where to search next. Claim 2 shows that in the worst case, the direction

she picks leads to a poor outcome, revealing that high quality discoveries instead

exist on the other side of the search space. Therefore, her optimal action at such a

history is to conclude search.

To hedge against bifurcation risk, the searcher would explore close to the end-

points 0 or 1: bifurcation risk is then only possible if the searcher discovers a very

high quality.
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4.3 Directional Risk

If the agent searches too close to 0 or 1, she risks having searched on the wrong side

of the interval. In such a scenario, discovering a sufficiently low quality is valuable,

because it narrows down the location of the target. This scenario is depicted on

the left panel of Figure 5. Instead, if the quality she discovers is sufficiently high,

the search region remains large and an additional search is not profitable in the

worst case. The right panel of Figure 5 shows such a scenario. The agent faces

directional risk if she has searched once at x, the search window is contiguous and

q(x) ≥min{23(1− c) + x
3 ,

2
3(1− c)− x−1

3 }. Figure 5 highlights such region in blue.

1
2

x 1

1

ql

qr

1
2

x 1

1

Figure 5: The agent explores x and in the first figure she discovers a low quality
q(x). Lipschitz continuity then narrows down the possible target locations on the
right end of the interval. Instead, in the second figure the agent discovers a high
quality, which does not help significantly in narrowing down the location of the
target.

Claim 3. An optimal search policy concludes when the agent faces directional risk.

Proof. Suppose the agent discovered a quality such that she is facing directional

risk. The worst-case quality index is similar to the one pictured in the right panel

of Figure 5. If the first search was to the left of 1
2 , the agent is left with a search

window of measure q(x) − x. Since the agent will optimally search at most twice,

the worst-case quality she anticipates over this region is 1− q(x)−x
2 . She will search
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for a second time only if this quality minus the cost of search exceeds the quality

q(x) she already discovered. That is,

q(x) < 1− q(x)− x
2

− c ⇐⇒ q(x) <
2
3

(1− c) +
x
3
.

This is a contradiction, since the agent faces directional risk only if the quality she

discovered is q(x) ≥min
{

2
3(1−c)+ x

3 ,
2
3(1−c)− x−1

3

}
= 2

3(1−c)+ x
3 . Similarly, if the first

search is to the right of 1
2 , she is left with a search region of measure x + q(x) − 1,

and thus an expected worst-case quality of 3−x−q(x)
2 . Then, she will search a second

time only if

q(x) <
3− x − q(x)

2
− c ⇐⇒ q(x) <

2
3

(1− c)− x − 1
3

,

which is again a contradiction.

4.4 Optimal Search Policy

The proofs of Claim 2 and Claim 3 show that it is optimal for the agent to stop in

the second period if and only if she faces bifurcation or directional risk. Figure 6

identifies the stopping region and the continuation region.

Upon searching any item x in the first period, and conditional on discovering a

quaity that leaves the agent in the stopping region, her payoff is minimized when

she discovers a quality at the bottom of this region. This is immediate.

Upon searching any item x in the first period, and conditional on discovering

a quality that leaves the agent in the continuation region, her payoff is minimized

when she discovers a quality that puts her near the top this region. This is because

the optimal policy continues to search in period two only when the second search

is guaranteed to be of sufficiently high quality. This guarantee is smaller when the

search window is larger, as there is more scope for the target to be further from

the second search. The search window is largest when the searcher discovers an

intermediate quality that barely puts the searcher in the continuation region.

Putting these observations together, the worst-case payoff for the agent, after

any search x in the first period, is discovering a quality q(x) such that (x,q(x))

is on the lower envelope of the stopping region, i.e., the upper envelope of the

19



continuation region. This is an M-shaped curve, as seen in Figure 6.

Therefore, a policy that maximizes the agent’s worst-case payoff searches at

one of the two peaks of the M-shaped curve in the first period. These peaks occur

where the directional and bifurcation regions meet, so they are the solutions to the

following system of equations:q(x) = min
{

2
3(1− c) + x

3 ,
2
3(1− c)− x−1

3

}
,

q(x) = max{x,1− x},

which implies that in an optimal policy, x0 ∈
{

1
4 + c

2 ,
3
4 − c

2

}
.

In the second period, the optimal policy stops if (x0,q(x0)) is in the stopping

region. Otherwise it searches at the center of the remaining (contiguous) search

window, as this would minimize the distance to the target item in the worst case.

More formally:

Claim 4. Let x0 ≡ 1
4 + c

2 . Let

σ (h0) = x0,

and for any h1 ≡ (x0, z0), let

σ (h1) =

∅ if z0 ≥ 3
4 − c

2

1− lh1
2 otherwise.

Then σ is an optimal policy.9

Intuitively, the worst-case outcome for the agent is one where she discovers an

intermediate quality in the first period. This quality is barely high enough to stop

search in the first period and not low enough to better hone in on the target in

the second period. To maximize payoffs in such a scenario, the agent searches at a

location where she is equally well hedged against bifurcation risk and directional

risk.

9While Claim 4 characterizes a left-to-right optimal policy, there is a symmetric right-to-left
policy as well, so the optimal policy is not unique.
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Figure 6: The stopping region, depicted in grey, is where the agent experiences
either bifurcation or directional risk. The continuation region, in white, lies below
it. The lower envelope of the stopping region, the solid black line, represents the
worst-case discovery for any first period search.

4.5 Simultaneous vs Sequential Search

The optimal policy accounts for the option value of searching a second time if

the first discovery is low quality. To see how, it is instructive to compare an opti-

mal policy in our sequential search model to the optimal policy in a simultaneous

search model.

If the agent had to pick two locations at once to search simultaneously, she

would choose locations 1/4 and 3/4. This configuration ensures an item of quality

1 cannot be farther than distance 1/4 from one of the chosen locations, guarantee-

ing that the agent gets a payoff of at least 3/4− 2c.

With sequential search, there is option value to deciding whether or not to

continue with a costly second search. The agent would no longer search again upon

finding a quality of 3/4. This in turn affects the worst-case outcome of searching at

x = 1/4 in the first place. The first search of the optimal sequential policy cleaves

closer to the center. Getting a lower draw is more informative when searching

closer (but not exactly at) the center, because it generates more information for a

second search. Under the optimal policy, the agent gets a payoff of at least 3/4−1.5c

(see Figure 6).
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5 Proof of the General Result

We convey the key ideas for the proof of Theorem 2 in the general case. For any

strategy σ ∈ Σ, the continuation value at any history h ∈H is

V σ
q (h) ≡ p(hσq )− (p(h)− z∗h).

First, we argue that at a non-terminal ordered search history h and conditional on

following σL→R, the quality that minimizes the agent’s continuation payoff after

searching at σL→R(h) is φ(lh):

Lemma 2. For any non-terminal h ∈HσL→R and for all q ∈Qh,

φ(lh)− c ≤ V σL→R
q (h).

Clearly, the agent is better off if she discovers a quality above the threshold, as

φ(lh) is the lowest quality for which the policy recommends stopping. The argu-

ment that discovering any quality below the threshold improves the agent’s even-

tual payoff upon stopping is less immediate. On the one hand, discovering low

quality is informative: the search window shrinks, narrowing the location of target

items. On the other hand, exploiting this information requires additional costly

searches.

To understand why the tradeoff always goes in the agent’s favor, recall the ge-

ometric depiction of σL→R at an ordered search history h in Figure 2. Suppose

searching at σL→R(h) reveals a quality lower than φ(lh). The search window at

this new history, h+1
q , shrinks to a region smaller than the interval covered by the

triangles centered at x2 and x3, shown in Figure 7. At h+1
q , consider the ‘non-

responsive’ strategy σ that searches at x2, stops if x2 ≥ φ(lh) + c, and searches and

stops at x3 otherwise. This strategy nets the agent either φ(lh) + c − c = φ(lh) after

the first search or φ(lh)+2c−2c = φ(lh) in the second search. A discovery of quality

lower than φ(lh) + 2c is impossible if x3 is searched on path: the Lipschitz bounds

would imply that the search window is empty at such a history, constradicting the

fact that a target item exists. Strategy σL→R performs even better than the non-

responsive strategy at history h+1
q by adapting the search location to the smaller

search window, proving Lemma 2.
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1

σL→R(h) x2 x3 1

φ(lh)
c

c

kk +2c

q(σL→R(h))

Figure 7: When the agent discovers a quality q(σL→R(h)) < φ(lh), the search win-
dow shrinks to the solid red region in this image, with size lh+1

q
less than k+(k+2c).

Suppose the agent chose to search locations x2 and x3 sequentially. If she discov-
ered worse qualities than those at the vertices of the respective triangles, the search
window would be empty, which is a contradiction. By searching at the peaks of the
triangles, the agent must then be able to secure a continuation utility V σ

q (h) larger
than φ(lh)− c.
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Figure 8: Searching in x1 , σL→R(h), x2, and x3 leaves a non-empty search window.
Then, there exist quality indices that pass through the items discovered and attain
the target. The agent will never do better than the threshold φ(lh).

Next we argue that at any ordered search history, the agent can do no better by

using a strategy other than σL→R:

Lemma 3. For any non-terminal h ∈HσL→R and σ ∈ Σ, there is a q̃ ∈Qh with

V σ
q̃ (h) ≤ φ(lh)− c.

Suppose σ is a strategy that always searches inside the search window in any

period. We construct a feasible quality index q̃ such that the latest discovery at

any step is c better than the previous.10 Such a quality index at most maintains

the agent’s continuation value constant, proving that φ(lh) − c is an upperbound

to the agent’s belief about her continuation payoff. Interestingly, the threshold is

such that the agent will never search more than N (c, lh) items, thus making N (c,1)

the effective game horizon (and guaranteeing that any optimal strategy must ter-

minate).

10If σ searches outside the search window, the greatest feasible improvement in quality is even
smaller; compare q(x3) and q(x2) in Figure 8.

24



6 Conclusion

Running a mile under 4 minutes was a feat that was seriously attempted by ath-

letes since the 1880s. For many decades, it was unclear whether the barrier to

achieving this feat were physical or psychological. However, in the 1954, Roger

Bannister, an unlikely and iconoclastic runner who eschewed the training wisdom

of the day finally ran a mile in under 4 minutes. Several other soon followed him,

though he did not immediately reveal his training regimen to his competitors. To-

day, it is an impressive but not rare feat. A tribute to Bannister in the Harvard
Business Review writes (Taylor (2018)):

“. . . what goes for runners goes for leaders running organizations. In

business, progress does not move in straight lines. Whether it’s an ex-

ecutive, an entrepreneur, or a technologist, some innovator changes the

game, and that which was thought to be unreachable becomes a bench-

mark, something for others to shoot for. That’s Roger Bannister’s true

legacy. . . "

Anecdotes like these suggest that simply knowing that some target is achiev-

able affects how agents look for it. We model rediscovery and find that having a

target turns search into a process of elimination. Agents are emboldened by fail-

ure: rather than stop after a disappointing discovery, they set their sights higher.

Insofar as rediscovery is a source of innovation, it may be of interest to poli-

cymakers to understand it, and our model may serve as a helpful starting point.

Policymakers may, for example, be interested in industry-level innovation dynam-

ics of firms that carry on their research in private, e.g. by keeping their innovations

as trade secrets. This may be captured by studying a sequence of rediscovery at-

tempts by firms who observe only the final outcomes but not failed attempts of

their predecessors.

Policymakers may also be interested in encouraging rediscovery. One may use

our framework to study whether this is better done by subsidizing search, reward-

ing good discoveries or a mixture of the two. Similarly, platforms that mediate

search and learning may be interested in designing recommendations to influence

consumer search. Our model may serve as a helpful baseline for search in the

absence of such influence. We leave these as topics for further study.
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A Proofs

Recall that all proofs are developed in continuation value space. Unless necessary

to avoid confusion, we drop the dependence of reachable histories h+k
q (σ ) on the

policy σ .

Proof of Lemma 1.

Because h is non-terminal, σL→R(h) = 1− lh + 1−φ(lh). We consider two cases.
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Case 1: q(σL→R(h)) ≥ φ(lh). Then,

Sh+1
q

= [1− lh,σL→R(h)− 1 + q(σL→R(h))]∪ [σL→R(h) + 1− q(σL→R(h)),1],

where, by the assumption in this case,

σL→R(h)− 1 + q(σL→R(h)) ≥ σL→R(h)− 1 +φ(lh)

= 1− lh + 1−φ(lh)− 1 +φ(lh)

= 1− lh.

Therefore, h+1
q is not an ordered search history. Let n = N (c, lh). Then, the length

of the search window is

lh+1
q
> q(σL→R(h))− σL→R(h)

= 2(φ(lh))− 2 + lh

=
n− 1
n

lh − (n− 1)c.

Because φ(·) is decreasing, φ(lh+1
q

) < φ
(
n−1
n lh − (n − 1)c

)
. By Equation 1, n(n − 1)c ≤

lh < n(n+1)c. This implies that (n−1)(n−2)c ≤ n−1
n lh−(n−1)c < (n−1)nc. Therefore,

φ
(n− 1

n
lh − (n− 1)c

)
= 1− 1

2(n− 1)

(n− 1
n

lh − (n− 1)c
)
− n− 2

2
c

= 1− lh
2n
− n− 1

2
c+ c

= φ(lh) + c.

Therefore,

φ(lh+1
q

)− c < φ(lh) ≤ q(σL→R(h)).

Because σL→R ignores past discoveries, this directly implies that h+1
q is terminal

according to Definition 6.

Case 2: Suppose instead that q(σL→R(h)) < φ(lh). Then,

Sh+1
q

= [σL→R(h) + 1− q(σL→R(h)),1],
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so h+1
q is an ordered search history. By assumption lh+1

q
< n−1

n lh− (n−1)c, so φ(l+1
h ) >

φ(lh) + c. Then, combining, we get q(σL→R(h)) < φ(lh) < φ(l+1
h ) − c, therefore h+1

q is

not a terminal history.

Proof of Proposition 1

First, the left-to-right policy is threshold by definition. Next, the threshold depends

on the history only through the length of the search window lh, so σL→R is index.

Third, note that by equation 1,

φ(l) = 1− l
2N (c, l)

− N (c, l)− 1
2

c ≤ 1− N (c, l)(N (c, l)− 1)
2

− N (c, l)− 1
2

c

= 1− (N (c, l)− 1)c ≤ 1

as long as N (c, l) > 0. If h+1
q is not a terminal node, then lh+1

q
≤ lh − 2(1−φ(lh)), so

σL→R(h+1
q ) > 1− lh+1

q
≥ 1− lh + (2−φ(lh))

> 1− lh + 1−φ(lh) = σL→R(h),

where the last inequality follows from the fact that φ(l) ≤ 1 for any l. Therefore,

the left-to-right policy is directional.
Finally, Lemma 1 implies that if h+1

q is not a terminal history, it is an ordered

search history. The search window shrinks from h to h+1
q for any q ∈Ωh where the

discovery has quality below the target, i.e., lh+1
q

< lh. Because φ(·) is decreasing,

φ(lh+1
q

) > φ(lh), so the stopping threshold increases between h to h+1
q . Increasing

stopping thresholds imply that the left-to-right policy ignores past discoveries.

Proof of Theorem 2

To show that σL→R is optimal, we must consider three kinds of deviations:

1. Stopping when σL→R recommends continuing,

2. Continuing when σL→R recommends stopping,

3. Searching an item other than σL→R(h).
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Lemma 2 shows that deviations of the first or second kind do not strictly improve

the agent’s worst-case eventual payoff. Lemma 3 shows that deviations of the third

kind also do not strictly improve the agent’s worst-case eventual payoff.

Proof of Lemma 2

Let h ∈HσL→R be a non-terminal history and q ∈Qh.

Base Case: N (c, lh) = 1. Because h is non-terminal, Sh = [a,1] for some a ∈ (0,1],

so σL→R(h) = a + lh
2 . The threshold φ(lh) is 1 − lh

2 . There is no feasible q̃ ∈ Qh such

that q̃(σL→R(h)) < φ(lh), because such a q̃ does not attain a value of 1 anywhere.

Therefore, q(σL→R(h)) ≥ φ(lh), so σL→R stops, so φ(lh)− c ≤ V σL→R
q (h).

Induction Hypothesis: Suppose that for any h′ ∈HσL→R such that N (c, lh′ ) ≤ n−1 and

for all q ∈Ωh′ ,

φ(lh′ )− c ≤ V σL→R
q (h′).

Inductive Step: N (c, lh) = n. The case where q(σL→R(h)) ≤ φ(lh) is trivial, so suppose

that q(σL→R(h)) < φ(lh). Then,

Sh+1
q

= [σL→R(h) + 1− q(σL→R(h)),1].

Then

lh+1
q

= q(σL→R(h))− σL→R(h) < φ(lh)− σL→R(h)

= φ(lh)− (1− lh + 1−φ(lh))

= 2φ(lh) + lh − 2

=
n− 1
n

(lh −nc)
< n(n− 1)c,

where the last inequality is because lh < n(n+ 1)c by Equation 1. This implies that

N (c, lh+1(q)) = n− k, for some 1 ≤ k < n. By the inductive hypothesis,

V σL→R
q (h+1

q ) ≥ φ(lh+1
q

)− c.
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Moreover, lh+1
q
< (n− k)(n− k + 1)c by Equation 1. Because φ is decreasing,

φ(lh+1
q

)− c ≥ φ
(
(n− k)(n− k + 1)c

)
− c = 1− (n− k)(n− k + 1)c

2(n− k)
− (n− k − 1)

2
c − c

= 1− (n− k)c − c

Finally, because lh ≥ n(n− 1)c by Equation 1,

φ(lh) ≤ 1− n(n− 1)
2n

c − n− 1
2

c = 1− (n− 1)c ≤ 1− (n− k)c − c.

Therefore, V σL→R
q (h+1

q ) ≥ φ(lh). Because h is non-terminal, V σL→R
q (h) = V σL→R

q (h+1
q )−c,

so

V σL→R
q (h) ≥ φ(lh)− c.

Proof of Lemma 3

For k = 0,1,2,3 . . . define history h+k as follows:

h+k ≡


h, if k = 0

h+(k−1), if σ (h+(k−1)) = ∅
h+(k−1) ∪

(
σ (h+(k−1)

)
, z∗(h+k)

)
, otherwise,

where,

z∗(h+k) = min
{
φ(lh) + (k − 1)c, max

q∈Q
h+(k−1)

q
(
σ (h+(k−1))

)}
.

For all k ≥ 1, the best item at h+k has quality at most φ(lh) + (k − 1)c. The agent

had to pay kc to reach history h+k from h. Therefore, letting k̄ be such that h+k̄ is a

terminal history, for any q̃ ∈Qh+k̄ ,

V σ
q̃ (h) ≤ φ(lh) + (k − 1)c − kc = φ(lh)− c.

It remains to be shown that there exists some q̃ ∈ Qh+k̄ . For this, it suffices to

show that (i) for any two (x′, z′), (x′′, z′′) ∈ h+k̄, z′′−z′
x′′−x′ ≤ L, and (ii) Sh+k̄ is nonempty.
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The former follows directly by construction of h+k̄, so next we argue the latter.

Let n = N (c, lh). Note that Sh+k = Sh+(k−1) if z∗(h+k) < φ(lh)+(k−1)c. Therefore, for

k > n, either

z∗(h+k) = φ(lh) + kc > φ(lh) +nc = 1− lh
2n
− n− 1

2
c+nc

> 1− n(n+ 1)
2n

− n− 1
2

c+nc = 1,

which would imply that Sk is nonempty, or Sh+k = Sh+(k−1) .

Then, by induction, h+k̄ is nonempty if k̄ > n and Sh+n is nonempty. Otherwise,

if k̄ < n, Sh+n ⊆ Sh+k̄ . Therefore, to show that h+k̄ is nonempty, it suffices to show

that Sh+n is nonempty.

From the h+(k−1) to hk, the search window shrinks by at most an open ball of

radius 1− z∗(h+k), denoted by B(h+k). The measure of the search window Sh+n must

then be

µ(Sh+n) ≥ µ

(
Sh \∪n−1

k=0B(h+k)
)
≥ µ(Sh)−

n−1∑
k=0

2
(
1− z∗(h+k)

)
≥ lh −

n−1∑
k=0

2
(
1−φ(lh)− kc

)
= lh −

n−1∑
k=0

2
( lh
n

+
n− 1

2
c − kc

)
= lh − lh +

n(n− 1)
2

c − n(n− 1)
2

c = 0.

The search window at history h+n has always weakly positive measure. If the

measure is strictly positive, Sh+n is nonempty. Otherwise, note that since each ball

B(h+k) is an open set, the search window must contain at least an isolated point.
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