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Abstract

Innovation arises from successfully solving a problem. We develop a the-

ory of discovery as a two-dimensional match between problems and solutions,

recasting a researcher’s trade-off between exploring novel ideas and mastering

technical methods as a constrained resource allocation problem. We analyze

how the interplay of income effects (driven by resources and ability) and sub-

stitution effects (driven by relative skills) governs the optimal approach to

discovery. Our framework yields sharp testable predictions about individual

researcher behavior and allows us to study the effects of collaboration on re-

search. Comparative advantages determine specialization in teams and hiring

practices, yet endogenously formed superstar teams are suboptimal from a

welfare perspective. Our framework rationalizes heterogeneous findings on

the direction of innovation and provides a structural basis for empirical anal-

ysis that can guide research policy.

1 Introduction

Innovations arise from a successful match between a problem and a solution.

The discovery process is thus a two-dimensional search over problems and so-

lution methods. The qualitative literature frames this duality as a tension between

“technology-push and market-pull” (Di Stefano et al. (2012)) or “solution-driven
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and problem-driven” innovation (Kruger and Cross (2006)). Sometimes innova-

tors begin with a clear vision of a product and persist until the right technique

is found; for example, the idea of a durable, safe light source was obvious, but

Edison conducted 6000 trials with different materials and structures.1 Conversely,

other innovations begin with a novel method, and the question is how to apply

this technology. Theodore Maiman described his invention of the LASER as “a
solution looking for a problem,” which researchers only later matched to disparate

applications in medicine, telecommunications, and consumer electronics.

While the necessity of this match is well-understood conceptually, formal eco-

nomic models of search have largely abstracted away from this two-dimensional

structure. Following Weitzman (1979), models typically view discovery as a unidi-

mensional search for the “best” option.2 However, as the anectodes about Edison

and Maiman illustrate, discovery is often not about the intensity of search along

one dimension, but about the alignment across two: ideas (problems) and meth-

ods (solutions). An idea without a method remains unrealized; a method without

an application remains unused. Researchers therefore face a fundamental resource

allocation trade-off: Should they devote effort to exploring the breadth of potential

ideas, or to mastering the depth of technical methods?

In this paper, we bridge the gap between the qualitative literature on problem-

solution fit and formal search theory. We develop a tractable model that recasts

discovery as a two-dimensional search problem with a matching structure. We

represent the epistemic landscape, the fit between ideas and methods, as a Brown-

ian path, capturing the idea that similar problems require similar solutions, which

creates local correlation in the search space. A researcher, constrained by her avail-

able resources, chooses a “research mix:” how broadly to explore ideas and how

many methods to master. Discovery occurs only if at least one explored idea can

be successfully matched with a mastered method.

Our primary contribution is to provide a simple theoretical framework that

generates sharp, empirically testable predictions about the matching approach to

search. We first show that the probability of discovery induces strictly convex pref-

erences over ideas and methods. This allows us to map the complex problem of

1For an academic account of Edison’s process, see Weitzman (1998).
2Exceptions include the recombination-based models of search of Weitzman (1998) and, more

recently, Bardhi and Callander (2025).
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innovation search into the canonical framework of consumer theory. Building on

this representation, we obtain several predictions regarding how the optimal re-

search mix responds to the economic environment and the epistemic landscape.

First, we characterize when idea-driven or method-driven search is optimal. We

find that ideas and methods are substitutes, meaning an abundance of ideas re-

duces the marginal value of mastering additional methods. We also characterize

the income expansion path of a researcher. In our framework, methods behave as

“normal goods” while idea exploration can behave as an “inferior good.” In prac-

tice, this implies that expanding a researcher’s budget or capabilities may induce

the researcher to substitute away from exploring novel ideas toward mastering

additional methods.

Leveraging the connection to consumer theory, we offer both positive and nor-

mative insights into debates in the innovation literature. In our model, the avail-

ability of resources constrains not only the rate of discovery, but its direction. For

instance, grant funding may shift the optimal research mix towards method-heavy,

narrower portfolios, consistent with heterogeneous empirical findings on the im-

pact of funding on novelty (see, e.g., Myers and Tham, 2023). Moreover, this static

substitution pattern generates dynamic lock-in. If researchers can flexibly improve

their capabilities, they systematically invest in their existing strengths, deepening

the divide between problem-finders and problem-solvers.

The tendency toward individual specialization creates a natural incentive to

collaborate. Forming teams between researchers with unbalanced abilities unam-

biguously improves the success rates. We study how research collaborations shape

the rate and direction of discovery, and how such collaborations form endoge-

nously.3 As in trade theory, researchers allocate tasks within a team according

to comparative advantages. We find that, despite synergies from specialization,

the production function of teams is submodular in the researchers’ abilities. In

essence, this points to a specific market failure in scientific collaboration. When

teams form endogenously, stable matches are positively assortative, leading to the

“superstar teams” documented in the literature (Ahmadpoor and Jones, 2019). In-

stead, the welfare-optimal team formation requires negative assortative matching.

We finally study the effects of directed technological change on the direction

3The increasing role of teams in research and innovation is widely documented and discussed,
for example, in Azoulay (2019) and Jones (2021).
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of research. While technologies that reduce method costs (e.g., rapid prototyping,

simulation software) unambiguously increase method mastery, tools that lower

idea costs (e.g., Generative AI and Large Language Models) induce complex substi-

tution effects. We show that these tools can paradoxically cause methods-focused

researchers to explore more ideas, while they cause idea-focused researchers to

rely increasingly on methods.

Our framework provides a tractable structure for empirical analysis. Because

the optimal research mix is a function of the underlying landscape, key parame-

ters such as the epistemic volatility of a field can be structurally identified from

observable variation in research portfolios. By formalizing discovery as a search

for a match, our model provides structurally testable implications about the eco-

nomics of discovery, with a unified lens through which to view individual strategy,

team formation, and the direction of innovation.

1.1 Related Literature

Our work relates to the literature on search following Weitzman (1979). While

Weitzman (1979) studies the search among independent options, Callander (2011)

introduces a tractable search model with correlated options by introducing a spa-

tial search dimension and correlation through an unknown and continuous map-

ping from locations to outcomes. In particular, Callander (2011) assumes that

this mapping is determined by the realization of a Brownian path. Several papers

build on this model, extending it in different directions. Garfagnini and Strulovici

(2016) consider forward-looking agents, Callander and Matouschek (2019) study

the role of risk aversion, and Callander et al. (2025) add a dimension of hori-

zontal differentiation. Urgun and Yariv (2025) study a model in which the agent

chooses the speed at which a Brownian path is discovered. Jovanovic and Rob

(1990) provide an early axiomatic motivation for the Brownian motion in search

models. Malladi (2025) departs from the Brownian assumption and instead as-

sumes that the outcome-mapping is a Lipschitz-continuous function. All of these

models share that a searcher seeks to find a one-dimensional location with a high

realization of the mapping.

We depart from the literature by considering a different economic problem.

Rather than searching for a peak, our researcher searches for a match in two di-
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mensions.4 Our departure changes the economic problem the researcher faces.

Any match that is discovered delivers the same value, but the search might fail

to generate a match. To maximize the probability of discovering a match, the re-

searcher chooses a two-dimensional search region for the idea-method mapping to

pass through.

In this sense, our model is closer to Banchio and Malladi (2025) and Carnehl

and Schneider (2025). In the former, a researcher faces a fixed maximal value of

the process and searches for a location generating this realization. In the latter, a

researcher chooses a fixed location and searches for the realization of the process

at the given location. Our searcher is more flexible, attempting to identify an

arbitrary match between location and realization.

Scholarship in innovation management and industrial design has long posited

that search occurs simultaneously across two distinct dimensions, the problem

and the solution method. Maher and Poon (1996) and Maher and Tang (2003)

characterize this as “co-evolutionary design,” analyzing the iterative heuristics re-

searchers use to align the problem space with the solution space. We depart from

such cognitive descriptions by modeling this multidimensional search within a

rational choice framework, delivering sharp, testable implications regarding how

incentives and resource constraints shape the direction of innovation. Further-

more, our framework unifies disparate strands of the literature, from the solution-

first approach to innovation of Gruber et al. (2013) and Von Hippel and Von Krogh

(2016), to the contrasting view of Cyert and March (1963) which introduces problem-

first innovation as the concept of “problemistic search”.

In the economics of innovation and science, several papers address the direc-

tion of innovation based on researchers’ question-choice incentives.5 Our paper

instead distinguishes between two alternative but related innovation search mar-

gins, and thus, directions of innovation. The tradeoff faced by our researcher

4Other papers drawing on related modeling tools consider different search targets and different
processes; Bardhi and Callander (2026) provide an excellent survey of the literature. For example,
Bardhi (2024) and Bardhi and Bobkova (2023) consider sampling points to learn a summary statis-
tic of the process. While the former employs general Gaussian processes, the latter assumes an
Ornstein-Uhlenbeck process. Callander and Clark (2017) studies search for roots of a Brownian
motion. However, none of these papers captures the notion of a two-dimensional search for a
match.

5See, for example, Bryan and Lemus (2017); Bobtcheff et al. (2017); Hopenhayn and Squintani
(2021); Hill and Stein (2025); Hill et al. (2025).
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adds a novel perspective to the studies on the role of grants in shaping discov-

ery. Our framework can rationalize frequently observed patterns in the literature

(see Azoulay and Li, 2020; Carnehl et al., 2025, for an overview) and provide novel

testable implications.

2 Model

We develop a model of scientific discovery in which a researcher chooses how to al-

locate limited time between exploring new ideas and mastering technical methods

to produce a publishable finding. The core of the model is an uncertain epistemic
landscape that connects ideas to the methods required to solve them.

2.1 The Epistemic Landscape

The space of potential research ideas is represented by the positive real line, x ∈
R+. Each idea x is associated with a unique solution method, y(x) ∈ R, that is

required for its successful implementation. We normalize the current frontier of

knowledge to lie at the origin, x = 0 with solution method y(0) = 0.

The link between ideas and solution methods is inherently uncertain. We

model their relationship as the realized path of a driftless Brownian motion with

volatility parameter σ2 > 0, (y(x))x≥0, mapping each idea x to its solution method

y(x).6 Given the knowledge frontier (0,0), for any idea x, the method y(x) is a ran-

dom variable following a normal distribution with mean E[y(x)] = 0 and variance

var(y(x)) = σ2x.

The volatility parameter of the Brownian motion σ2 > 0 quantifies the funda-

mental ruggedness of the epistemic landscape. A higher volatility corresponds to

a more complex, unpredictable field, where a small change in ideas being pursued

is more likely to lead to a drastic change in the required solution method.

6Jovanovic and Rob (1990) motivate the use of the driftless Brownian motion in the context of
innovation through a natural axiomatization of the search process.
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2.2 The Researcher’s Problem

A researcher seeks to make a discovery on the epistemic landscape. Her search

strategy defines a set of ideas to investigate and a set of methods to master. For-

mally, she chooses an interval of ideas, L ⊂R+, and an interval of methods, H ⊂R.

A discovery occurs if she investigates an idea x ∈ L for which she masters the solu-

tion method y(x), i.e., y(x) ∈H .

The researcher’s payoff is binary: she receives a utility of one if a discovery is

made and zero otherwise. Her objective is to maximize the probability of discovery

subject to two key constraints, a resource constraint and a novelty constraint.

First, the researcher faces a resource constraint, which could represent time,

funding, or cognitive effort. Let ℓ = |L| and h = |H | denote the breadths of the

chosen idea and method intervals, respectively. We refer to ℓ as the researcher’s

investment in ideas and h as her investment in methods. These investments are

costly. The per-unit cost of ideas is cℓ > 0 and the per-unit cost of methods is ch > 0.

Given a total budget B > 0, the researcher’s choice (L,H) must satisfy the budget

constraint:

cℓℓ + chh ≤ B. (1)

Second, the researcher faces a novelty constraint, as the market for discoveries

typically does not reward incremental discoveries.7 To implement this constraint,

we assume that the researcher obtains a reward only for discoveries on ideas with

distance of at least ∆ > 0 from the current knowledge frontier.

The problem that the researcher solves is

max
L⊆R+,H⊆R

P (∃x ∈ L s.t. x ≥ ∆ and y(x) ∈H) (2)

s.t. cℓℓ + chh ≤ B. (3)

We can simplify the researcher’s optimization problem using two general prop-

erties of the epistemic landscape. As uncertainty about methods increases in the

distance to the knowledge frontier, it is optimal to explore those ideas closest to

the frontier subject to the novelty requirement. Therefore, the researcher chooses

an idea interval of the form L = [∆,∆+ ℓ]. Furthermore, for any given idea, the as-

7For example, new patents have to be sufficiently different from existing patents. Academic
papers have to be sufficiently distinct from the prior literature.
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sociated method is distributed unimodally and symmetrically around zero. The

researcher optimally chooses a methods interval that is symmetric around the

benchmark method y(0) = 0, that is, H = [−h/2,h/2].

Lemma 1. The researcher’s optimal choice has the following properties:

1. The optimal H is of the form [−h/2,h/2].

2. The optimal L is of the form [∆,∆+ ℓ].

Omitted proofs can be found in the Appendix. These arguments reduce the

researcher’s problem from choosing the location and size of two intervals to simply

choosing their optimal breadths, (ℓ,h) ∈R2
+:

max
ℓ∈R+, h∈R+

P (∃x ∈ [∆,∆+ ℓ] s.t. y(x) ∈ [−h/2,h/2]) (4)

s.t. cℓℓ + chh ≤ B. (5)

3 Convex Tastes for Discovery

The key technical result of this paper is that the preferences of the researcher over

ideas and methods are convex.

Theorem 1. The preference relation ⪰ over the set R2
+ of methods and ideas defined by

(ℓ,h) ⪰ (ℓ′,h′) ⇐⇒ F(ℓ,h) ≥ F(ℓ′,h′)

is strictly convex.

Denote by

A(ℓ,h) :=
{
∃x ∈ [∆,∆+ ℓ] s.t. y(x) ∈ [−h/2,h/2]

}
the event that the realization of the epistemic landscape y(x) “passes through”

the researcher’s choice of ideas and methods. The probability of such an event,

F(ℓ,h)B P (A(ℓ,h)), is the researcher’s utility function.

Theorem 1 allows us to represent the researcher’s problem as a canonical con-

sumer problem with two “goods,” ideas and methods, subject to a budget con-

straint. Additionally, simple properties of the epistemic landscape guarantee that

8



the marginal utilities of ideas and methods are positive, which translates into

strongly monotonic preferences.8

The representation as a well-behaved standard consumer problem provides us

with several immediate yet useful corollaries and analogies that we will employ

throughout.

Corollary 1. For any budget B and costs cℓ, ch > 0, there exists a unique solution to the
researcher’s problem.

With this representation at hand, we can characterize the optimal choice of

ideas and methods by studying the properties of the marginal rate of substitution

(MRS) between the two goods. This will be the subject of our analysis in Section 4

and serve as the building block for our more applied insights in Section 5. The rest

of this section outlines the proof of Theorem 1 and the corresponding intuition.

3.1 Sketch of Theorem 1’s Proof

We break down the proof in steps. First, instead of proving the convexity of pref-

erences directly, we will work with the associated utility function, F(ℓ,h). We will

prove that the utility function is jointly strictly concave, which implies strict quasi-

concavity and hence convexity of the induced preference relation ⪰.

Second, we break down the utility function F(ℓ,h) in the two components that

contribute to its value. By the law of total probability, F(ℓ,h) is equivalently written

as the probability of the event A(ℓ,h) conditional on the value y(∆) of the landscape

at ∆, integrated with respect to the measure µ∆ of y(∆):

F(ℓ,h) =
∫
R

P

(
A(ℓ,h) | y(∆) = z

)
dµ∆(z).

The event A(ℓ,h) has conditional probability one when the value y(∆) falls

within the boundary [−h/2,h/2] of the rectangle L ×H . This is represented in the

left panel of Figure 1. The event A(ℓ,h) instead has conditional probability less

than one when the value y(∆) falls outside of the boundary H . Simply put, the

landscape behaves as the path of a stochastic process with the same law as the

8The appendix makes all the arguments in the paper formal. In particular, this claim is formal-
ized in Appendix A.2.
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original stochastic process but started at value y(∆). The conditional probabil-

ity that the original process hits the rectangle is therefore the probability that the

restarted process enters the region H at any point before ℓ. This is represented in

the right panel of Figure 1.

0
ℓ

h

(a) The two landscapes represented in this
panel have a value y(∆) between −h/2 and
h/2, so they always hit the red rectangle.

0
ℓ

h
(b) The landscape with y(∆) > h/2 does not
hit the rectangle. Instead, the landscape
with y(∆) < −h/2 returns to a value y(x) ∈
[−h/2,h/2] for an x < ∆+ ℓ.

Figure 1: The two components of the conditional success probability

Our Brownian assumption implies symmetry and that µ∆(z) = Φ

(
z

σ
√
∆

)
. Thus,

we can rewrite the utility function as the sum of integrals

F(ℓ,h) =2
∫ 0

−h/2
dΦ

(
z

σ
√
∆

)
+ 2

∫ −h/2
−∞

P

(
A(ℓ,h) | y(∆) = z

)
dΦ

(
z

σ
√
∆

)
. (6)

Third, we compute the probability inside the integral. Consider a value of y(∆)

below the lower edge of the rectangle, which is −h/2. The probability of ever enter-

ing the height band [−h/2,h/2] during the window of length ℓ is exactly the prob-

ability that, starting from y(∆), the path’s supremum over an interval of length ℓ

clears the distance to the nearest boundary of the band, i.e., −h/2−y(∆) > 0. Denot-

ing the supremum of a Brownian motion initialized at 0 over the range [∆,∆ + ℓ]

by Mℓ and by Gℓ(x) its distribution function, we can write

P

(
A(ℓ,h) | y(∆) = z

)
= 1−Gℓ(−h/2− z).

With basic calculus, we prove in the appendix that the integrals above are repre-
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sented by the simpler integral

F(ℓ,h) = 2
∫ ∞

0
Φ

(
h/2 + z

σ
√
∆

)
dGℓ(z)− 1, (7)

where this integral is averaging over “future headroom” (the value of Mℓ) the prob-

ability that the value y(∆) is within headroom of the barrier −h/2.

Lastly, showing concavity of this integral directly remains challenging because

it depends on h and ℓ through a product. Instead, we use a simple quantile-

integration trick to represent the last integral as

F(ℓ,h) = 2
∫ 1

0
Φ

(
h/2 +Qℓ(p)

σ
√
∆

)
dp − 1, (8)

where Qℓ(p) is the generalized left-inverse of the CDF of Mℓ (or its quantile func-

tion). Since the distribution Φ is symmetric, unimodal, and uniformly integrable,

a sufficient condition for joint concavity of F(ℓ,h) is the joint concavity of the ar-

gument h/2 +Qℓ(p) for all p ∈ [0,1].9 The advantage of this representation is that

the argument is separable and linear in h, so all we are left to check for concavity

is that ∂2Qℓ(p)
∂ℓ2 < 0, or that the quantile function of the supremum is concave in ℓ.

The supremum Mℓ is identical in distribution to
√
ℓM1, so Qℓ(p) =

√
ℓQ1(p) which

allows us to conclude.

4 Optimal Research Mix

The previous section’s representation of our model as a consumer problem allows

us to characterize properties of the optimal research mix by leveraging classical

results from consumer theory. We will make explicit use of this connection, often

referring to the optimal research mix as the Marshallian demand.

As a first step, we obtain a convenient representation of the marginal rate of

substitution between methods and ideas. As per canonical consumer theory, the

marginal rate of substitution is instrumental in the characterization of the optimal

research mix.

9For all p ∈ [0,1], we are composing a strictly concave function Φ(·) with a positive and concave
function g(ℓ,h) = h/2+Qℓ(p)

σ
√
∆

, which ensures that concavity is preserved.
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Proposition 1. Let X = h/2
σ
√
∆

√
ℓ

ℓ+∆ . The marginal rate of substitution (MRS) between
h and ℓ is given by:

M = MRShℓ =
Fℓ
Fh

=
σ
√
∆

√
ℓ
√
ℓ +∆

(
H(X)−X

)
where H(x) is the hazard rate of a standard normal distribution, H(x) = φ(x)

1−Φ(x) .

The MRS relates the marginal effect of an increase in the methods mastered h

to an increase in the amount of search ℓ. Additional methods increase the chance

that a path with y(∆) > |h/2| hits the box by reducing the distance to the methods

that the path has to travel over the search length ℓ.10 Additional ideas increase the

search length and thereby raise the dispersion of methods over the ideas pursued.

The final expression of the success probability in (8) highlights these respective

effects. Both ideas and methods have diminishing returns due to the strict concav-

ity of the standard normal distribution on the positive domain. However, there is

a fundamental difference in methods and ideas expansions. Expanding the meth-

ods mastered always reduces the distance of realized methods to methods mas-

tered linearly, h/2. Expanding the ideas pursued has intrinsic diminishing returns:

Methods disperse over the search length only at a square-root rate,
√
ℓQ1(p).

The marginal rate of substitution characterized in Proposition 1 allows us to

determine whether the Marshallian demand is a corner solution or is interior.

Proposition 2. For any cost vector (cℓ, ch) there exists an income level B such that

1. If B ≤ B, the Marshallian demand is a corner solution with h∗ = 0.

2. If B > B, the Marshallian demand is interior, i.e. ℓ∗,h∗ > 0.

Intuitively, the researcher’s indifference curves are always tangent to the y-axis,

hence there are no corner solutions where a researcher focuses solely on methods.

Instead, the lower the indifference curves, the steeper they are at the intersec-

tion with the x-axis, generating corner solutions for sufficiently constrained re-

searchers.

10Note that the marginal increase in the methods at ∆ does not affect the success probability at
the margin because paths with |y(∆) − h/2| < ε would hit the rectangle almost surely for any ℓ > 0
and ε ↓ 0.
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When the optimal research mix is interior, it is fully characterized by the fol-

lowing system of equations: M(ℓ∗,h∗) = cℓ
ch

cℓ · ℓ∗ + ch · h∗ = B.
(9)

Whenever the choice is a corner solution, we immediately have (h∗ = 0, ℓ∗ = B/cℓ).

An analytical characterization of the Marshallian demand beyond this implicit

representation is unavailable, but all our insights will follow from borrowing meth-

ods of consumer theory and applying them to our setting.

4.1 Comparative Statics and Testable Implications

The characterization of the optimal research mix delivers immediate comparative

statics. Variation in parameters of this single-agent decision problem allows us to

provide empirically testable predictions, before applying our results to the collab-

orative aspects of research in the next section.

First, consider how the optimal research mix responds to changes in the epis-

temic volatility σ of the research field. The marginal rate of substitution increases

in σ , which means that as a field becomes more uncertain a researcher invests

more in generating ideas. Intuitively, as volatility increases, the spatial correlation

decreases and the researcher shifts her focus towards increased sampling. Note

that, all else equal, variation in the observed research mix can identify the epis-

temic volatility through this comparative static with respect to σ : a more rugged

epistemic landscape induces a research mix that is more idea- and less methods-

intensive. The same comparative static holds for changes in ∆, the “bar for nov-

elty”. As the bar for novelty increases, the optimal research mix widens: inter-

preting ∆ as editorial norms in a field, our model predicts more intensity in idea

generation from fields with stricter novelty requirements.

Next, we study the comparative statics with respect to the researcher’s costs of

methods and ideas. In the language of consumer theory, we study price effects. We

find that methods and ideas are gross substitutes.

Proposition 3. An increase in the cost of methods ch (resp. ideas cℓ) leads to

1. Negative own-price effects, i.e. ∂chh
∗ ≤ 0 (∂cℓℓ

∗ ≤ 0)
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2. Positive cross-price effects, i.e. ∂chℓ
∗ ≥ 0 (∂cℓh

∗ ≥ 0).

This is a consequence of the “law of demand”: two goods are always net sub-

stitutes and the own-price effect of a Hicksian demand is always negative. While

natural, there is no sense in which we should expect such substitutability patters

a priori. In fact, many models assume some form of complementarity between

different skills within an organization. Instead, our model predicts substitution

effects between methods and ideas. Accordingly, within a given field characterized

by the epistemic volatility σ and the novelty constraint ∆, variation in researchers’

observed Marshallians allows the identification of researchers’ comparative ad-

vantages.

Perhaps the most interesting comparative static is the income effect, that is, the

changes in the optimal research mix in response to a change in a researcher’s bud-

get.

Proposition 4. Fix (cℓ, ch).

1. Methods are a normal good; that is, a researcher with a higher budget will employ
more methods (∂Bh∗ ≥ 0).

2. Ideas are a normal good when the budget is weakly lower than B from Proposi-
tion 2 (∂Bℓ∗ ≥ 0). Instead, when B > B, ideas are an inferior good; that is, a
researcher with a higher budget will try fewer ideas (∂Bℓ∗ < 0).

To understand the latter result, consider the fundamental asymmetry in the

technology of discovery. Expanding the set of mastered methods h linearly re-

duces the distance between the realization of the landscape and the researcher’s

capabilities. Conversely, expanding the set of ideas ℓ increases the probability of

a match only through the diffusion of the Brownian landscape, which scales with

the square root of the search length. As the budget increases and h grows large, the

conditional distribution of unsolved problems becomes increasingly concentrated

near the upper boundary of the research window. This concentration raises the

marginal return to method expansion relative to idea exploration. Consequently,

the substitution effect dominates: the researcher reduces investment in the di-

minishing returns of exploration (ℓ) to fund the linear returns of methods h. We

represent the path traced by the Marshallian demand as the budget increases, the

income-allocation curve, in Figure 2.
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ℓ

h

B/cℓ

Figure 2: The income-allocation curve. The Marshallian demand moves along the
curve in the direction of the arrows as income increases.

While the inferiority of ideas is at the core of several results in the remain-

der of the paper, this comparative static has meaningful implications in its own

right. The income effect implies that reductions in effective “research budgets”,

such as temporary increases in time constraints, might shift output toward more

idea-intensive work. In practice, this suggests, for example, that new parents, who

experience a negative shock to available research time, may produce work that is

more distant from the current stock of knowledge and produced with methodol-

ogy closer to the state-of-the-art.11 Intuitively, when time is scarce, researchers opt

for exploration of a broader set of ideas with fewer methods, instead of investing

in additional methodologies. Thus, life shocks that mimic income effects in our

framework can be expected to generate measurable shifts in the novelty of pro-

duced knowledge. Such predictions could be tested by measuring the semantic

or citation distance of new parents’ subsequent papers from the existing frontier,

exploiting variation in a field’s epistemic volatility σ .

Remark. As mentioned, the inferiority of ideas is related to the rate of dispersion

of methods. A process whose methods do not disperse, for example the mean-

11Analogous predictions apply to researchers winning a grant, allowing them to buy out teach-
ing hours, for example. Our findings can reconcile the conflicting empirical evidence regarding
the effect of winning a grant on the novelty of grant winners’ research through variation in the
pre-grant budget, or, empirically easier to observe, the revealed pre-grant research mix.
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reverting Ornstein-Uhlenbeck process that remains concentrated around the 0-

method axis, intrinsically increases the returns to ideas.12

4.2 Endogenous Specialization

We conclude the study of the properties of the optimal research mix by studying

the choices of a researcher who can shape their research skill, that is, the long-run

optimal research mix.

Formally, suppose that a researcher can invest an amount I ∈ (0, I) in her skills.13

In particular, she can freely allocate the investment I between idea-generation and

method-learning skills, that is, she chooses α ∈ [0,1] such that

cαh = ch −αI, cαℓ = cℓ − (1−α)I.

Each choice of α generates a new budget line with a different slope, but any two

such budget lines cross in the same interior point on the 45-degree line, (hI =

B̂, ℓI = B̂) with B̂ := B
ch+cℓ−I .

The optimal choice of the researcher is “bang-bang;” she will either invest ex-

clusively in idea-generation or exclusively in method-generation.

Proposition 5. Fix (cℓ, ch) and B. The researcher’s optimal investment is α = 1 if h∗ >
ℓ∗, and α = 0 otherwise.

Intuitively, the researcher is choosing α to maximize her indirect utility func-

tion

v(cℓ − (1−α)I, ch −αI,B).

We know from consumer theory that the indirect utility function is quasi-convex

in prices, hence its maximizers must be extreme points. Roy’s identity then de-

termines which extreme point is optimal. Which of the two corner solutions is

optimal depends on the initial relative cost cℓ/ch, the parameters of the epistemic

12In fact, there is a space-time transform that reduces an Ornstein-Uhlenbeck process to a Brow-
nian, and under that space-time transform the rectangle of ideas and methods is no longer a rect-
angle, but a strip growing at a square-root rate with ideas. Thus, the rate of dispersion seems to be
the correct object to govern the substitution patterns, but a formal connection is beyond the scope
of this paper.

13We set I := min{ch, cℓ} such that both ideas and methods remain strictly costly.
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landscape σ , and the novelty constraint ∆. The more favorable for methods the

relative cost is initially, the more valuable are investments in methods-skills. How-

ever, the more uncertain the underlying epistemic landscape, or the stronger the

novelty constraint (higher σ or higher ∆), the more valuable are investments in

idea-generation skills.

In practice, we may expect that researchers in fields with more complex epis-

temic landscapes have greater incentives to invest in idea-generation skills than

researchers in less complex, more predictable fields. An alternative interpretation

of these results is the optimal design of curricula. Consider a school designing a

new graduate program. Should it focus the curriculum more on technical method

skills or rather on more creative question-asking skills? It turns out that the an-

swer is field-dependent and dependent on the students’ background. In fields

with more volatile epistemic landscapes, the optimal curriculum should focus rel-

atively more on asking questions and generating ideas rather than on teaching

more methods.

5 Collaboration

In this section, we leverage our characterization of the optimal research mix and

its comparative statics to glean some insights into one fundamental aspect of re-

search, collaboration. Collaboration is an increasingly prevalent feature of inno-

vation and research; see, for example, the survey in Jones (2021). The nature of

the team problem allows us to draw parallels between researchers allocating their

limited resources in collaborative settings and households making consumption

and leisure decisions. We first study how tasks are allocated within a research

team and then move on to investigate how and when such teams form. Building

on these insights, we show how an organization may structure research collabo-

ration optimally. Finally, we add to the recent discussions on the effects of Large

Language Models on cognitive labor by analyzing collaboration with technological

tools such as AI assistants.
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5.1 Task Allocation in Teams

Consider a team of two researchers, ordered by their comparative advantage on

idea-generation. In particular, suppose that researcher i = 1,2 has a budget Bi and

costs ciℓ, c
i
h such that c1

ℓ /c
1
h < c2

ℓ /c
2
h. The team faces a joint optimization problem

reminiscent of the intra-household allocation problem in labor economics. Denote

by ℓT = ℓ1 + ℓ2 and hT = h1 + h2 the team’s aggregate choice of ideas and methods.

The team’s production function is simply the indirect utility with respect to the

joint budget set

X =
{
(ℓT ,hT ) ∈R2

+ : ciℓℓ
i + cihh

i ≤ Bi for i ∈ {1,2}
}
. (10)

The next proposition shows that the optimal division of tasks within the team is

based on comparative advantages and leads to specialization.

Proposition 6. The team-optimal research mix (ℓT ,hT ) has the following properties.

(i) One researcher specializes in the task for which she has a comparative advantage;
that is, the optimal task allocation is such that either h1 = 0 or ℓ2 = 0.

(ii) If researcher 1’s autarky solution is interior, then researcher 2 will provide only
methods; that is, ℓ2 = 0 and h2 = B2/c2

h.

(iii) The team’s budget line is

h =


B2

c2
h

+ B1

c1
h
− c1

ℓ

c1
h
ℓ, if ℓ ≤ B1

c1
ℓ

B2

c2
h
− c2

ℓ

c2
h

(
ℓ − B1

c1
ℓ

)
, if ℓ > B1

c1
ℓ
.

The proof of the first and the third item is a direct application of the well-

known comparative advantage logic, as in Ricardo (1821). The second item follows

as a consequence of the comparative statics in the previous section, in particular

of income shifts. If the researcher with comparative advantage on generating ideas

was already mixing in some methods (this is case (ii) above), any feasible bundle

in the team’s budget is also feasible under the budget line of that researcher when

shifted by B2/c2
h. By inferiority, the optimal choice on this shifted budget line in-

volves fewer overall ideas, hence researcher 2, who has a comparative disadvantage
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on idea generation, will avoid generating ideas altogether. This is true irrespective

of absolute advantages, hence even a highly skilled researcher (who has low cℓ and

ch) may focus on methods if collaborating with a teammate with comparatively

better idea generation skills.

Proposition 6 highlights how the formation of teams endogenously unlocks

synergies through specialization. While the sum of the researchers’ autarky choices

is feasible for the team, it will generally be suboptimal, as researchers can reallo-

cate tasks within the team and thereby achieve a higher probability of discovery.

5.2 Sorting in Teams

Since collaboration is such a fundamental component of research, a natural ques-

tion is whether private incentives to collaborate implement a socially optimal team

composition. In this section, we investigate this question by considering the fol-

lowing scenario. There is a continuum of researchers who face the same relative

costs cℓ/ch, but they vary in their budget Bi . Equivalently, researchers vary in their

absolute advantage along both dimensions of research inputs at the same rate. We

identify individuals in this collection by their budget and index it with α ∈ [0,1].

Hence, we represent the collection of researchers by their budgets as B = {Bα}α∈[0,1]

with higher values of α corresponding to higher budgets (higher ability). Similarly,

there is a second collection that has relative cost ĉℓ/ ĉh. We denote this collection

by B̂ = {B̂β}β∈[0,1]. Suppose that both groups have the same total mass and that the

budgets are distributed according to the strictly increasing cumulative distribu-

tion functions G and Ĝ, respectively.

We are interested in how researchers from the first collection will match with

researchers from the second to form teams. For simplicity, we assume that each

team will work on a separate project, so the problem reduces to a classic matching

problem in the spirit of Becker (1973). In particular, we assume what Becker calls a

“rigid” split of the team surplus, where the agent from collection B always receives

a fraction t of the team’s surplus and the agent from collection B̂ receives fraction

1−t instead. Again, the production function of the team is the indirect utility with

respect to the team’s joint budget. Since the cost ratios are fixed in this section, we

simply denote the production function by v(Bα, B̂β). We show in the appendix that

this indirect utility is submodular and that its marginals are positive (Lemma 4).

19



A matching is a bijection τ : B → B̂, equivalently represented by the correspond-

ing bijection on the indices of the collections, denoted by τa : [0,1]→ [0,1]. We re-

fer to the matching τ such that τa(α) = Ĝ−1 (G(α)) as the positive assortative match-

ing, and the matching τ such that τa(α) = Ĝ−1 (1−G(α)) as the negative assortative
matching. A matching is welfare-optimal if it is the solution

τ∗ ∈ argsup
τ

∫ 1

0
v(Bα, τ(Bα))dG(α).

Instead, a matching τ is individually optimal, or stable, if, for all α ∈ [0,1],

v(Bα, B̂β) > v(Bα, τ(Bα)) for some B̂β ∈ B̂

implies that

v(τ−1(B̂β), B̂β) > v(Bα, B̂β).

That is, a stable sorting respects individual incentives by avoiding blocking pairs.

The following is an immediate corollary of the submodularity of the indirect

utility that we establish in Lemma 4 in Appendix A.

Proposition 7. The negative assortative matching is welfare-optimal. The positive as-
sortative matching is individually-optimal.

The result identifies a market failure in the formation of research teams. If left

up to individual incentives, stable teams that form will generally not maximize

total welfare. The researcher’s production function in our setting exhibits decreas-

ing returns to scale, which severely limits the social benefit of “superstar” teams,

documented in the literature (see, for example, Ahmadpoor and Jones, 2019, who

identify positive assortative matching across scientific fields as well as in patent-

ing) in settings with decentralized matching procedures. A benevolent designer

could reshuffle teams to increase total surplus, by matching the lowest ability re-

searcher in one group with the highest ability researcher in the other.14 Anecdo-

tally, this corresponds to the formal matching processes found in private sector

research units, where the newest engineers are paired with the most knowledge-

able mentors.
14Of course, this abstracts from any considerations of the type of research produced (e.g., its

novelty) and focuses entirely on the total amount of research output.
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5.3 Hiring

We leverage our simple model of how teams may form in equilibrium as well as un-

der the influence of a benevolent planner to discuss under which conditions teams

should form. So far we have treated the team’s joint budget set as the Minkowski

sum of the budget sets of the individual researchers, but running a team entails ad-

ministrative and managerial costs. We model these costs as a reduction in the fea-

sible choices of the manager, who now faces a tradeoff: whether to hire a researcher

and reduce their research efforts in order to manage them (become a “manager”),

or whether to remain an “independent contributor.”

Formally, consider a researcher, which we call the PI (Principal Investigator),

with budget B and cost vector c. The PI can choose to hire another researcher from

a pool B = {(c1,B1), . . . , (cn,Bn)} by giving up B0 units of budget. If the PI hires agent

Bi , they receive utility v(B−B0,Bi). If they instead decide not to hire, they receive

utility v(B).

The first result is immediate.

Proposition 8. The PI will never hire if all agents in B have absolute disadvantage in
both dimensions with respect to an agent with cost c and budget B0. The researcher will
always hire if there exists an agent in B with absolute advantage in both dimensions
with respect to an agent with cost c and budget B0.

Aside from these extreme cases, the decision of when to hire will be based

on comparative advantages of the researchers in B with respect to the original re-

searcher’s budget set with income B0. To reduce the dimensionality of the problem,

we make the simplifying assumption that the PI hires from a pool of candidates

with comparative disadvantage on idea generation. Parametrically, we assume in

the following that all researchers have the same budget B0 and that the absolute

disadvantage on ideas of any researcher k is equal to her absolute advantage on

methods, that is, we assume for all k ≥ 2 that

ckℓ − cℓ︸︷︷︸
comp. disadvantage on ideas

= ch − ckh︸︷︷︸
comp. advantage on methods

≥ 0. (11)

The next proposition answers the question of whether the PI should hire, and if so

who.
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Proposition 9. If the PI hires, she hires the researcher with the greatest absolute/comparative

advantage on methods. The PI always hires if her optimal solution in isolation (ℓ∗,h∗) is
such that

h∗ ≥ B0

ch + cℓ

This proposition helpfully characterizes many features of optimal hiring poli-

cies. For example, more efficient researchers (ones such that B0 is smaller) will, all

else equal, hire more often. This reflects a sorting effect of comparatively better

managers into managerial positions.

Constrained researchers don’t hire, that is, when B < B from Proposition 2,

because such researchers always choose h∗ = 0, the researcher will not form a team

with any of the available agents in B.

5.4 Human-AI Collaboration

In this part, we consider a different type of collaboration: the interaction of hu-

man researchers with technology. Our main focus will be on the impact of AI tools

on the human researcher’s optimal research mix between ideas and methods. To

this end, we model the human-AI interaction as an expansion of the feasible set of

(h,ℓ)-combinations. We assume, in line with the findings in Vaccaro et al. (2024),

that AI is particularly valuable for creative tasks, implying that access to AI re-

duces the cost of generating ideas. Specifically, we model the researcher’s cost of

idea generation to be

cH−AIℓ ℓ =

c
AI
ℓ ℓ, if ℓ ≤ ℓ0

cAIℓ ℓ0 + cℓ(ℓ − ℓ0), if ℓ > ℓ0,
(12)

where cAIℓ ≤ cℓ measures the AI performance in idea generation, while ℓ0 provides

an upper bound on the amount of ideas that AI can support generating. Thus, we

obtain the budget line of the human-AI team as

hH−AI =
B
ch
−


cAIℓ
ch
ℓ, if ℓ ≤ ℓ0

cAIℓ ℓ0 −
cℓ
ch

(ℓ − ℓ0), if ℓ > ℓ0.
(13)
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(b) Idea generation with AI tool

Figure 3: Human-AI collaboration.

Figure 3a illustrates the impact of adopting AI as idea-generation tool on the re-

searcher’s set of feasible research mixes. As the AI becomes more powerful, the

set expands, and eventually generates ℓ0 ideas for free. Intuitively, the AI tool acts

like a team member with a comparative advantage on idea generation relative to

the researcher.15 The next proposition shows how the adoption of AI technologies

as idea-generation tools affects different researchers or fields heterogeneously.

Proposition 10. Adopting increasingly powerful AI tools for idea-generation leads to
the following adjustments of the optimal research mix.

(i) An increase in ideas generated and a decrease potentially followed by an increase
in methods mastered for researchers who generate few ideas (ℓ∗ < ℓ0) without the
AI tool.

(ii) A decrease in ideas generated and an increase in methods mastered for researchers
who generate many ideas (ℓ∗ > ℓ0) and master some methods (h∗ > 0) without the
AI tool.

(iii) An initial increase and potentially a decrease in ideas generated and an increase
in methods mastered for researchers who generate many ideas (ℓ∗ > ℓ0) but do not
master any methods (h∗ = 0) without the AI tool.

15However, it is a team member that cannot contribute any methods to the team, implying that
the upper bound on methods remains B/ch. Moreover, the AI-collaborator’s budget is such that it
cannot produce more than ℓ0 ideas.
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Proposition 10 highlights the heterogeneous impact of adopting AI tools on

different researchers. Figure 3b illustrates this heterogeneity. Researchers whose

work relies relatively little on ideas without the AI tool (ℓ∗ < ℓ0) will shift their

optimal research mix in favor of ideas over methods. Intuitively, for these re-

searchers, the AI collaboration reduces the marginal cost of generating ideas, cor-

responding to a rotation of their budget line. ?? therefore implies that the re-

searcher will generate more ideas and master fewer methods. As the AI becomes

more powerful, the researcher eventually hits the AI-boundary ℓ0, and will invest

any further technology improvements in mastering additional methods. In con-

trast, researchers who relied relatively more on ideas while still mastering some

methods (ℓ > ℓ0, h
∗ > 0) will generate fewer ideas while mastering more methods.

For these researchers, the AI adoption can be interpreted as a budget increase,

which, by Proposition 4 implies that they will generate fewer ideas while expand-

ing their methods. The remaining set of researchers (ℓ∗ > ℓ0, h
∗ = 0) is constrained

before the technology adoption and will therefore only generate more ideas ini-

tially. Once the researchers become unconstrained, they will act as the ones with

(ℓ∗ > ℓ0, h
∗ > 0).

Thus, our results can have fundamentally different implications for the work of

different types of researchers. Some may perceive their work as less inspiring and

creative, as they rely less on ideas while focusing more on methods, while others

may enjoy the additional focus on a broader set of ideas. Moreover, and perhaps

counterintuitively, the adoption of idea-generating tools can make the final output

less idea intensive.

6 Conclusion

In this paper, we provide a novel conceptualization of discovery as a two–dimensional

matching problem between ideas and methods embedded in an epistemic land-

scape. Modeling the mapping from ideas to required methods as a Brownian mo-

tion, we obtain that the researchers’ preferences over idea-method combinations

are strictly convex. Thus, we can analyze the problem of a resource-constrained re-

searcher using the consumer-theory toolkit and characterize the researcher’s Mar-

shallian demands for ideas and methods. With this rich yet tractable and portable
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model of the knowledge-production process, we can shed light on many under-

studied aspects of corporate and academic research. We obtain sharp comparative

statics that speak to important policy questions and that can unify a variety of

phenomena in science and innovation.

While we touch on several aspects of knowledge production, our framework

lends itself to more intensive study of various questions that are beyond the scope

of the present paper. For example, consider the case of grant or resource allo-

cation. We take on the perspective of an individual researcher maximizing the

probability of discovery. However, a funding institution might consider how to al-

locate a limited budget to a set of heterogeneous researchers. Our team formation

results suggest that the most constrained researchers should receive additional re-

sources. To see this, note that the grants can be thought of as the second group in

our team formation problem with identical relative costs. The limited budget can

be incorporated by some members of the grant collection having a budget of zero.

However, beyond the probability of success, the preferences of the funding institu-

tion may incorporate also the type of successful research, for example, its novelty

in the idea or in the method space; a topic our results on the income effect illumi-

nate. A similarly promising direction is to think about how the head of an R&D

division should allocate their heterogeneous researchers (that is, researchers with

different relative skills cℓ/ch) to problems with different degrees of complexity σ .

Finally, a central opportunity lies in the close empirical analogues of our model

ingredients. The idea breadth ℓ can be proxied by topical dispersion and the method
breadth h by methodological dispersion (for a recent approach of measuring a pa-

per’s question- and method-novelty, see, for example, Luo et al., 2022). The field-

level epistemic volatility σ is structurally identifiable from the observed research

mix. Consequently, our comparative statics map to clear identification strategies.

Income shocks—such as teaching-load reforms or parental leave—can be used to

test the inferiority of ideas, while price shocks—such as the introduction of sta-

tistical software (lowering ch) or generative AI (lowering cℓ)—allow for tests of

the substitution patterns we identify. Hence, our model’s predictions are straight-

forwardly testable and policy recommendations can be tailored to fields and re-

searchers’ characteristics.
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A Proofs

A.1 Proof of Lemma 1

Item 1. Consider any rectangle with some L = [ℓ0, ℓ0 + ℓ] and H = [h1,h1 + h]. We

need to show that the probability that there exists a pair (x,y(x)) that belongs to

L ×H is maximized when h1 = −h2 . We leverage the same characterization of the

probability of hitting a given rectangle we develop for Theorem 1. In particular,

we know that the above probability for our rectangle will be

∫ h1+h

h1

dΦ

(
z

σ
√
ℓ0

)
+ 2

∫ +∞

h1+h

(
1−Φ

(
y − (h1 + h)

σ
√
ℓ

))
dΦ

(
z

σ
√
ℓ0

)
+ 2

∫ +∞

−h1

(
1−Φ

(
y − (−h1)

σ
√
ℓ

))
dΦ

(
z

σ
√
ℓ0

)
Since we want to maximize this, let us set its derivative with respect to h1 to zero.

We get

2

σ2
√
ℓℓ0

(∫ +∞

h1+h
φ

(
y − h1 + h

σ
√
ℓ

)
φ

(
y

σ
√
ℓ0

)
dy −

∫ +∞

−h1

φ

(
y + h1

σ
√
ℓ

)
φ

(
y

σ
√
ℓ0

)
dy

)
= 0

which is satisfied exactly when h1 = −h2 , and hence h1 + h = h
2 .

Item 2. Let L = [ℓ0, ℓ0 +ℓ]. Given the first item, the sum above can be written as

2
∫ ∞

0
K(y)dΦ

(
y

σ
√
ℓ0

)
where

K(y) = 1 [y ≤ h/2] +1 [y > h/2]2
(
1−Φ

(
y − (h/2)

σ
√
ℓ

))
.

Note that K(y) is decreasing over y and vanishes at infinity. We are interested in

∂
∂ℓ0

2
∫ ∞

0
K(y)dΦ

(
y

σ
√
ℓ0

)
= 2

∫ ∞
0

K(y)
∂
∂ℓ0

1

σ
√
ℓ0
φ

(
y

σ
√
ℓ0

)
dy

Since the standard normal distribution satisfies the Heat equation ∂f
∂σ = σ ∂2f

∂y2 , this
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is equivalent to

2
∫ ∞

0
K(y)

1
2

∂2

∂y2
1

σ
√
ℓ0
φ

(
y

σ
√
ℓ0

)
dy = −

∫ ∞
0

∂
∂y

K(y)
1

σ
√
ℓ0

∂
∂y

φ

(
y

σ
√
ℓ0

)
dy,

where the equality comes from an integration by parts. The latter integral is the

integral of the first derivatives of two decreasing functions: K(y) and φ(y), respec-

tively. Hence, it is positive, and the initial negative sign proves that the derivative

is negative. This implies that the constrained optimal value for ℓ0 is the minimum

feasible value, ∆.

A.2 Proof of Strong Monotonicity

Proposition 11. The marginal utility of h and ℓ is strictly positive, i.e., Fh,Fℓ > 0.

By definition, A(ℓ,h + δ) ⊃ A(ℓ,h) for δ > 0. Since the Brownian motion has

positive mass on any open set of continuous functions, the strict inclusion implies

that P(A(ℓ,h+δ)) > P(A(ℓ,h)), thus F(ℓ,h+δ)−F(ℓ,h) > 0. Dividing by δ and taking

limits proves that Fh(ℓ,h) > 0. The same logic applies to the derivative with respect

to ℓ.

A.3 Remaining Steps in the Proof of Theorem 1

Following the steps in the main text, we can rewrite (6) using the cdf Gℓ(·) of the

supremum of the Brownian motion initialized at zero as

2
∫ 0

−∞
(1−Gℓ(−h/2− z))dΦ

(
z

σ
√
∆

)
,

as for any z ≤ 0, we have Gℓ(z) = 0. By symmetry and simplifying the integral, we

obtain that this is equivalent to

1− 2
∫ ∞

0
Gℓ(z − h/2)dΦ

(
z

σ
√
∆

)
.
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Integration by parts allows us to rewrite the last line as

2
∫ ∞

0
Φ

(
z

σ
√
∆

)
dGℓ(z − h/2)− 1,

as the boundary terms at ∞, that is, G(∞)Φ(∞), evaluate to one and at zero, that

is, G(−h/2)Φ(0), to zero, because the supremum of the Brownian initialized at zero

must be non-negative. A change of variables w = z − h/2 and observing that G has

no mass on [−h/2,0] implies that this expression is equal to

2
∫ ∞

0
Φ

(
h/2 +w

σ
√
∆

)
dGℓ(w)− 1,

which is expression (7) from the main text.

Finally, we apply a change of variables p = Gℓ(w), which requires the substitu-

tion w = G−1(p) =: Qℓ(p), where Qℓ(p) is the quantile function of the supremum

Mℓ. Hence, we obtain the final expression (8) from the main text

2
∫ 1

0
Φ

(
h/2 +Qℓ(p)

σ
√
∆

)
dp − 1.

A.4 Proof of Proposition 2

Denote by ℓ(p) and h(p) the bundles that belong to the same isoprobability curve

of level p. Consider the limit limh(p)→0M on any isoprobability curve. The MRS

in this limit is σ
√

∆
ℓ(p)(ℓ(p)+∆)

2
π where (ℓ(p),0) belongs to the isoprobability curve.

From Proposition 11 we know that p = F(0, ℓ) is increasing in ℓ, thus its inverse

ℓ(p) is increasing in p with ℓ(0) = 0. The above expression for the MRS is then

decreasing in p. Hence, there is always a value p such that for all p < p the MRS at

(ℓ(p),0) is larger than ch/cℓ. The expenditure function e(cℓ, ch,p) is increasing in p,

thus for all B ≤ e(cℓ, ch,p) the Marshallian demand is (ℓ∗,h∗) = (ℓ(p),0). Conversely,

for all B > e(ch, cℓ,p) the Marshallian demand will have h∗ > 0.

Finally, note that the limit limℓ(p)→0M is infinite. The indifference curves are

infinitely steep at the intersection with the h axis, thus there can be no corner

solution with ℓ∗ = 0.
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A.5 Proof of Proposition 3

First, note that if the Marshallian is in a corner solution, both items are obvious.

Instead, let us focus the proof on the case where the Marshallian is interior.

We split the proof in two parts. First, consider the effect of a change in the price

of methods, ch. To show that the own-price effect is negative, first note that the

own-price effect of a Hicksian demand is always negative. The own-price Slutsky

equation gives us the own-price effect on the Marshallian demand as the own-price

effect on the Hicksian demand minus the income effect on the same good times the

Marshallian demand. We prove in Proposition 4 that the income effect is negative

on h, which yields the result. The sign of the cross-price effect ∂chℓ
∗ again follows

from the Slutsky equation. The substitution effect is positive because two goods

are always net substitutes, and the income effect is negative because of inferiority

of ideas as shown again in Proposition 4.

Now, consider the effect of a change in the price of ideas, cℓ. We can take the

total derivative of the system (9) with respect to cℓ and use Cramer’s rule to get that

sign(∂cℓℓ
∗) = sign(−ℓMh−1). Proposition 1 gives us that Mh = 1

2(ℓ+∆)(H
′(X)−1), and

plugging this in we find that the sign is

ℓ
2(ℓ +∆)

(1−H ′(X))− 1 < (1−H ′(X))− 1 < 0

where we used item 3 in Lemma 2. Thus, ∂cℓℓ
∗ < 0.

The sign of ∂chh
∗ is equivalent to the sign of M + ℓMℓ. Let K = σ

√
∆(ℓ+∆)

ℓ so

X = h
2K . Now, the derivative of M with respect to ℓ is

Mℓ = ∂ℓ

( K
ℓ +∆

)
(H(X)−X) +

K
ℓ +∆

∂ℓX(H ′(X)− 1)

Separately, we have the following forms:

∂ℓK = − ∆

2ℓ(ℓ +∆)
K

∂ℓX = ∂ℓ

(
h

2K

)
= −h∂ℓK

2K2 =
h∆

4Kℓ(ℓ +∆)
=

X∆

2ℓ(ℓ +∆)

∂ℓ

( K
ℓ +∆

)
=

∂ℓK
ℓ +∆

− K

(ℓ +∆)2 = −K(∆+ 2ℓ)
2ℓ(ℓ +∆)2
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Plugging these formulas in, we get

Mℓ = −K(∆+ 2ℓ)
2ℓ(ℓ +∆)2 (H(X)−X) +

X∆

2ℓ(ℓ +∆)
K

ℓ +∆
(H ′(X)− 1)

=
K

2ℓ(ℓ +∆)2 [X∆(H ′(X)− 1)− (∆+ 2ℓ)(H(X)−X)] .

As a sanity check, our lemma immediately shows that the sign of Mℓ is negative.

Now, putting things together, we have

M + ℓMℓ =
K

ℓ +∆
(H(X)−X) + ℓ

K

2ℓ(ℓ +∆)2 [X∆(H ′(X)− 1)− (∆+ 2ℓ)(H(X)−X)]

=
K

ℓ +∆

[
X∆

2(ℓ +∆)
(H ′(∆)− 1) +

∆

2(ℓ +∆)
(H(X)−X)

]
=

K∆

2(ℓ +∆)2 [H(X)−X +X(H ′(X)− 1)]

=
K∆

2(ℓ +∆)2
d
dX

[X(H(X)−X)]

Thus, the sign of ∂cℓh
∗ is positive if and only if X(H(X)−X) is increasing, which is

guaranteed by item 4 of Lemma 2.

A.6 Proof of Proposition 4

First, when B < B the Marshallian demand is in a corner solution with h∗ = 0.

Consumption of both goods weakly increases as long as the Marshallian remains

in a corner solution.

Let us then focus on the case B > B. Since the utility function is twice differen-

tiable, we only need to sign the derivatives ∂Bh∗ = ∂h∗

∂B and ∂Bℓ
∗ = ∂ℓ∗

∂B . By taking the

total derivative of the system (9), we get the system of linear equationsMh Mℓ

ch cℓ

︸      ︷︷      ︸
A

∂Bh∗∂Bℓ
∗

 =

0

1

 .
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The solutions to this system are given by Cramer’s rule as∂Bh
∗ = − Mℓ

det(A)

∂Bℓ
∗ = Mh

det(A) .

Consider the sign of ∂Bℓ∗. First, note that Theorem 1 and Proposition 11 together

imply that the indifference curves are downward sloping, i.e.

dM
dℓ

∣∣∣∣∣∣
F(h,ℓ)=p

= Mℓ +Mh
dh
dℓ

= Mℓ −Mh
cℓ
ch

< 0.

Since det(A) = −ch · dMdℓ
∣∣∣
F(h,ℓ)=p

, the determinant is positive. Thus, sign(∂Bℓ∗) =

sign(Mh). Proposition 1 gives us that Mh = 1
2(ℓ+∆)(H

′(X)− 1).

By item 3 of the technical Lemma 2 in the appendix, Mh < 0, so ∂Bℓ
∗ < 0, and

ideas are an inferior good. If one good is inferior, Proposition 11 implies that the

other must be normal, so ∂Bh
∗ > 0.

A.7 Proof of Proposition 5

The researcher chooses α to maximize her indirect utility function:

max
α

v(cℓ − (1−α)I, ch −αI,B).

We know from consumer theory that the indirect utility function is quasi-convex

in prices (costs in our case). α enters the costs linearly. Hence its maximizers must

be extreme points.

Recall now Roy’s identity relating the indirect utility gain of a cost reduction

to the Marshallian demand:

− ∂v
∂cℓ

= ℓ∗
∂v
∂B

.

Then it is clear that the largest gain comes from the skill that is currently the most

utilized. The local argument implies the global one, as the implied locally optimal

investment reinforces the dominant skill.
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A.8 Technical Lemma on Standard Normal Hazard Rate

In several proofs we make use of the following lemma that derives properties of

the hazard of a standard normal distribution.

Lemma 2. The standard normal hazard rate function H(x) satisfies the following prop-
erties for positive arguments x > 0:

1. H(x) > x,

2. H ′(x) = H(x)(H(x)− x),

3. 0 ≤H ′(x) < 1.

4. X(H(X)−X) is increasing.

A.8.1 Proof of Lemma 2

Item 1. Instead of proving H(x) > x directly, we prove that 1
H(x) <

1
x . This is equiv-

alent to proving that f (x) = 1−Φ(x)− φ(x)
x < 0. Note that limx→∞ f (x) = 0, and

f ′(x) = −φ(x)−
(
−
φ(x)
x2 +

φ′(x)
x

)
= −φ(x)−

(
−
φ(x)
x2 +

−xφ(x)
x

)
= −φ(x) +

φ(x)
x2 +φ(x) =

φ(x)
x2 > 0.

Since the derivative is everywhere increasing and the limit for x→∞ is 0, it must

be that f (x) < 0, which concludes the proof of the first item.

Item 2. This is a simple derivation:

H ′(x) =
φ′(x)(1−Φ(x)−φ(x)(−φ(x))

(1−Φ(x))2

=
φ(x)2 − xφ(x)(1−Φ(x))

(1−Φ(x))2

= H(x)
φ(x)− x(1−Φ(x))

1−Φ(x)
= H(x)(H(x)− x).
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Item 3. Combining Items 1 and 2 from this lemma it is easy to see that H ′(x) >

0. To show H ′(x) < 1, consider the Mills’ Ratio R(x) = 1
H(x) . The inequality can be

reformulated as

H(x) (H(x)− x) =
1− xR(x)
R2(x)

< 1,

or

R2(x) + xR(x)− 1 > 0.

We then need to prove that R(x) >
√
x2+4−x

2 . Let the quantity on the right hand side

be L(x). Then the inequality can be rewritten once again as

G(x) = 1−Φ(x)−L(x)φ(x) > 0.

Note first that limx→∞G(x) = 0, and consider the derivative G′(x):

G′(x) = −φ(x)−L′(x)φ(x)−L(x)φ′(x)

= φ(x) (xL(x)−L′(x)− 1) .

Since L′(x) = −L(x) 1√
x2+4

, the derivative becomes

φ(x)L(x)

x√x2 + 4 + 1
√
x2 + 4

− 1


We claim that G′(x) < 0. To show this, suppose by contradiction that G′(x) ≥ 0.

Because φ(x) is always positive, this is equivalent to

L(x) ≥
√
x2 + 4

x
√
x2 + 4 + 1

.

Plugging in L(x) we get

√
x2 + 4− x

2
≥

√
x2 + 4

x
√
x2 + 4 + 1

⇐⇒

⇐⇒ 2
√
x2 + 4 + x

≥
√
x2 + 4

x
√
x2 + 4 + 1

⇐⇒

⇐⇒ 2 ≥ x
√
x2 + 4 + x2 + 4

x
√
x2 + 4 + 1

⇐⇒
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⇐⇒ 0 ≥ x2 + 2− x
√
x2 + 4

x
√
x2 + 4 + 1

⇐⇒

⇐⇒ 0 ≥ x2 + 2− x
√
x2 + 4 ⇐⇒

⇐⇒ x
√
x2 + 4 ≥ x2 + 2 ⇐⇒

⇐⇒ x4 + 4x2 ≥ x4 + 4x2 + 4 ⇐⇒

0 ≥ 4

which is a contradiction. Thus G′(x) < 0, which implies that G(x) > 0.

Item 4. Item 2 of this lemma shows that X(H(X)−X) is increasing if and only

if −XH ′(X)
H(X) is decreasing. Recall the Mills’ ratio expression as R(X) = 1

H(X) , and note

that

−XH ′(X)
H(X)

= XH(X)
(
−H

′(X)
H2(X)

)
= XH(X)

d
dX

(
1

H(X)

)
=
XR′(X)
R(X)

.

Theorem 2.5, part (b) of Baricz (2008) shows that the last term is decreasing over

the positive domain, completing our proof.

A.9 Proof of Proposition 6

Items (i) and (iii) follow directly from observing that any alternative task alloca-

tion shrinks the set of feasible (ℓ,h)-combinations. By monotonicity of the success

probability, these task allocations are dominated by the one based on compara-

tive advantages. To see this, note that for any feasible ℓt, the task allocation that

maximizes the feasible ht follows from

max
h1,h2,ℓ1,ℓ2

ht

s.t. ℓ1 + ℓ2 = ℓt

h1 + h2 = ht

ciℓℓ
i + cihh

i ≤ Bi .
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Due to monotonicity, the budget constraints must be binding. Thus, we can (i)

substitute ht by the individual choices, and (ii) substitute individual choices using

the budget constraints to obtain

max
ℓ1,ℓ2

2∑
i=1

(
Bi/cih − c

i
ℓ/c

i
hℓ

i
)

s.t. ℓ1 + ℓ2 = ℓt.

Finally, we can replace ℓ1 by the aggregate constraint on ℓt, yielding

max
ℓ2

B1/c1
h +B2/c2

h − c
1
ℓ /c

1
hℓ

t + (c1
ℓ /c

1
h − c

2
ℓ /c

2
h)︸           ︷︷           ︸

<0

ℓ2.

Thus, the team chooses the smallest feasible ideas for researcher 2, who has a

comparative disadvantage on ideas and the largest feasible amount of ideas for

researcher 1.

Item (ii) is a direct consequence of Propositions 2 and 4. If researcher 1’s au-

tarky solution (ℓ1,∗,h1,∗) is interior, then ℓ1,∗ < B1/c1
ℓ and, holding ℓ1,∗ fixed, the

team’s budget line at ℓ1,∗ has the same slope c1
ℓ /c

1
h but is shifted up from the re-

searcher 1’s autarky budget line by B2/c2
h by item (iii). Hence, Proposition 4 implies

that the team’s optimal choice satisfies ℓt < ℓ1,∗. Hence, ℓ2 = 0,h2 = B2/c2
h.

A.10 Lemma 4 and Proof of Proposition 7

First we prove a technical lemma.

Lemma 3. Let X (B,B′) be the joint budget set of the team composed of two researchers
with cost vectors c,c′ and budgets B and B′. Fix the cost vectors c,c′ and consider
two budget levels for each researcher, B,B′ and B̂, B̂′. For any x ∈ X (B,B′) and any
y ∈ X (B̂, B̂′) we have

αx+ (1−α)y ∈ X (αB+ (1−α)B̂,αB′ + (1−α)B̂′).

Proof. By definition, x ∈ X (B,B′) if there exist x1,x2 such that x1 +x2 = x and c ·x1 ≤
B, c′ · x2 ≤ B′, and similarly for y = y1 + y2. Then clearly c ·

(
αx1 + (1−α)y1

)
≤ B,
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and c′ ·
(
αx2 + (1−α)y2

)
≤ B′. The bundle αx+(1−α)y is equal to the bundle α(x1 +

x2)+(1−α)(y1 +y2), which is the sum of the two bundles above, both feasible under

their respective budget sets, and hence feasible under the joint budget set.

Lemma 4. The team’s indirect utility function v(Bα, B̂β) is non-decreasing in α, β, and
submodular.

Proof. For the first part, note that if α′ > α then Bα′ ⊃ Bα, and hence the joint

budget set X (Bα′ , B̂β) contains X (Bα, B̂β). The indirect utility function optimizes

over a larger set and hence is monotone non-decreasing. The same argument holds

for the second collection.

To show submodularity, it is sufficient to prove that the indirect utility function

is jointly concave. Denote by B the team with budgets (Bα, B̂β) for some α and β in

[0,1]. The indirect utility of team B is

v(B) = max
x∈X (B)

F(x)

where F(x) is the utility function characterized in Sections 3 and 4. Take another

team, denoted by B′, with budgets (B′α, B̂
′
β′ ). Let x∗ be the solution to maxx∈BF(x)

and x′∗ the solution to maxx∈B′ F(x). Then,

v(aB+ (1− a)B′) ≥ F(ax∗ + (1− a)x′∗)

≥ aF(x∗) + (1− a)F(x′∗)

= aV (B) + (1− a)V (B′)

where the first inequality is the definition of the indirect utility function together

with Lemma 3, the second inequality is the concavity of the utility function shown

in Theorem 1 and the last equality is the definition of indirect utility function.

The inequality chain shows that the indirect utility function is concave. Since the

indirect utility is twice continuously differentiable in the two income levels Bα and

B̂β , concavity is equivalent to submodularity on the lattice R
2.

Now we are ready to conclude the proof of Proposition 7. That the negative

assortative matching is welfare-optimal follows the arguments in Becker (1973),

and standard optimal transport literature with submodular objectives. Instead it
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is immediate to see that the stable match must be comonotone from the stability

condition itself. Consider Bα matched with B̂β (that is, τa(α) = β. It is always true

that v(Bα, B̂β′ ) > v(Bα, τ(Bα)) for a β′ > β, by virtue of the first claim of Lemma 4. It

must be then that every β′ > β prefers their match to Bα, hence τ−1
a (β′) > α for all

β′ > β. This is exactly the condition for positive assortment.

A.11 Proof of Proposition 10

Item (i) follows from ?? and observing that the AI-adoption (and further tech-

nological improvements) locally corresponds to a reduction in the costs of idea-

generation. If the researcher’s choice becomes ℓ∗ = ℓ0 eventually, the optimal so-

lution will remain at ℓ∗ by ?? and proposition 4, as the further reduction in idea-

generation costs cAIℓ pushes the researcher to increase ℓ. However, at ℓ0, the slope

discontinuously increases from cAIℓ to cℓ. Without AI, the researcher’s optimal

choice was below ℓ0, and thus, any optimal choice on a higher budget line but

with slope cℓ must feature ℓ < ℓ0. Hence, on both segments of the human-AI bud-

get line, we have a corner solution with ℓ∗ = ℓ0. Hence, h∗ increase with further

improvements in AI capabilities whenever ℓ∗ = ℓ0.

Items (ii) and (iii) are an immediate consequence of Propositions 2 and 4, as the

optimal choice features ℓ∗ > ℓ0, and therefore, the relevant segment of the budget

line does not change slope with AI adoption and improvements in AI capabilities.
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