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Abstract

A seller wants to sell a good to a set of bidders using a credible mechanism. We

show that when the seller has private information about her cost, it is impossible to

implement the optimal mechanism using any static mechanism. In particular, even

the optimal first-price auction is no longer credible. We show that the English auc-

tion can still credibly implement the optimal mechanism, unlike the optimal Dutch

auction. For symmetric mechanisms in which only winners pay, we characterize all

the static auctions that are credible: They are first-price auctions that depend only on

the seller’s cost ex-post via a secret reserve, and may profitably pool bidders via a bid

restriction. Our impossibility result highlights the crucial role of public institutions,

and helps explain the use of dynamic mechanisms in informal auctions.
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1 Introduction

In this paper, we revisit the question of credible auction design and show that when the

seller has private information about her cost, it is not possible to implement the optimal

(i.e., profit-maximizing) mechanism using a static auction. As we show, even the sealed-

bid first-price auction is not a credible mechanism. We show that optimality requires a

dynamic mechanism and that the ascending auction can be used to credibly implement

the optimal mechanism.

We are motivated to study credible auction design because many informal auctions

are decentralized, following bilateral communications between the seller and potential

buyers. In many informal sales, bidders are contacted with the opportunities to submit

bids for a good and do not have a chance to inspect the bids of others or what communi-

cation the seller had with other bidders. For example, in bidding for houses, it is often

hard for bidders to monitor or audit brokers running auctions regarding bids submitted

by others or the communication the brokers have with others. Beyond informal auctions,

our study also sheds light on many online auctions where sellers also communicate with

bidders through private, bilateral communications.

Our results yield two important takeaways. First, we explain why many informal auc-

tion/sale processes are dynamic rather than static: It is impossible for sellers to credibly

commit to optimal static mechanisms, and hence under credibility, dynamic mechanisms

may overperform static ones. Similarly, this may explain why, in select online markets,

sellers implement dynamic mechanisms (for example, eBay uses an auction format sim-

ilar to the ascending auction). Second, we highlight the role of institutions, such as cen-

tralized clearinghouses or public announcements, in ensuring optimal market operations.

Simple public announcements about offer timing or reserve prices provide the seller with

sufficient credibility to restore the optimality of static auctions.

Our notion of credibility follows the approach in Akbarpour and Li (2020). We say

that an auction is credible if the only profitable deviations a seller could have are such

that they would be observable by some bidder. For example, if a seller attempts to run

a second-price auction, it would not be credible because after observing all the bids the

seller could charge the winner a price between the highest and second-highest bid (for

example, via a practice known as soft reserve prices) and no individual bidder would be

able to detect that deviation.

The key new element of our model is that we allow the seller to have private informa-

tion about her cost and not be able to commit to public messages. For example, the seller

of a house may have their own private value of owning the house, a freight broker may
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have private information about the lowest price they are willing to accept, and an online

seller may have a private outside option of selling the item offline.

Our first result is that in this environment the optimal sealed-bid first-price auction

is not credible, and in fact has a profitable safe deviation for the seller with probability

1 (Theorem 1). It involves a dynamic deviation by the informed seller. The basic intu-

ition behind why the optimal first-price auction is no longer credible can be understood

through the following example (we will explain later why with probability 1 the seller

always wants to deviate):

Example 1. Suppose that there are two bidders. Each bidder i has an independent private

value θi ∈ {1,2} (with equal probabilities). The seller has an independent private cost

θ0 ∈ {0,0.7}. The optimal mechanism can be implemented via a first-price auction as

follows. If the seller has cost 0, then she tells each bidder the Myersonian reserve r(0) = 1,

and solicits a bid from {1, 5
3 }; if the seller has cost 0.7, then she tells each bidder i the

Myersonian reserve r(0.7) = 2, and solicits a bid from {0,2}. A bidder of a higher type

always selects the higher bid of the two. However, we claim that this mechanism cannot

be credible. The deviation works as follows. Consider the seller of cost 0. Let the seller

follow the mechanism for bidder 1 and tell bidder 1 that the reserve is r(0) = 1. Suppose

that the seller gets a high bid 5
3 from bidder 1. Now, if the seller continues following

the mechanism, then regardless of the bid from bidder 2, the seller’s payoff will be 5
3 .

However, if the seller deviates by pretending to have cost θ̂0 = 0.7 to bidder 2, then the

seller gets a payoff
1
2
× 5

3
+

1
2
× 2 >

5
3
,

since with probability 1
2 , bidder 2 bids 0 in which case the seller still has the bid 5

3 from

bidder 1, and with probability 1
2 , bidder 2 bids 2, in which case the seller makes strict

improvement.

Of course, in equilibrium, the deviation in Example 1 will not increase the auction-

eer’s profit because bidder 1 will anticipate the auctioneer using his bid as a reserve for

bidder 2 and so reduce his bid to begin with, eventually leading to a lower profit for the

auctioneer due to her inability to commit. The reason our result is different than in Ak-

barpour and Li (2020) is that they assume that the optimal reserve price is commonly

known by all bidders, and hence our deviation would be detectable by all bidders. In

contrast, since in our model the seller has private information about her cost, such seller

deviations are not detectable.

As we show, this result implies that no static mechanism can achieve optimality and be

credible at the same time (Theorem 2). The intuition this time follows from Akbarpour
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and Li (2020) who have shown that optimality plus being static, credible, and winner-

paying leaves only one candidate, the first-price auction. Moreover, because the seller has

private costs in our setting, it turns out that credibility also requires the mechanism to

be winner-paying: In any auction that may require a losing bidder to pay (e.g., all-pay

auctions), the seller of a high cost will find it profitable to take the payments from the

losing bidders and claim to every bidder that they are outbid by someone else.

Next, we show that the English (ascending) auction can still be used to credibly im-

plement the optimal mechanism (Theorem 3). This result does not require the English

auction to be run in an open-cry manner but only through bilateral communications. The

intuition for this result is as follows. Consider our deviation for the first-price auction.

Suppose that the seller knows that bidder 1 has stayed in the English auction for a while

with the clock rising to b1 (higher than the seller’s cost). Now, it might be tempting to

conclude that the seller should treat b1 as the new cost to set the reserve price for bidder

2 (assuming that the seller has not called bidder 2 yet). But that is not optimal. The op-

timal thing is to ask bidder 2 if he is willing to beat b1 and then run an auction between

him and bidder 1. That is, if the seller could not go back to bidder 1 (like in the first-

price auction), then she would inflate the winning bid. But here the seller always wants

to go back, and even after such a deviation, she wants to continue as if it were an English

auction.

These features of the English auction are not necessarily shared by other dynamic

mechanisms, e.g., the Dutch (descending) auction. In Akbarpour and Li (2020), both the

optimal English and Dutch auctions are credible. However, in our setting, the optimal

Dutch auction may not be credible (Example 2). This is perhaps surprising because in a

Dutch auction, our previous deviation for the first-price auction would not work because

when bidder 1 sends a message “I will take it at the current price”, it is already too late

for the seller to use the bid to update the reserve for bidder 2. It turns out that there is

a second deviation that the seller may use to profitably manipulate the reserves: Upon

observing the bad news that the previous bidders declined to bid given the Myersonian

reserve price, reduce the reserve price for the last bidder. The key here is that the last

bidder does not know he is the last one — otherwise, the Myersonian reserve price would

continue to be optimal — and the seller claims to the last bidder that the competition is

high but the bidder is lucky to face a low-cost seller. Note that this downward deviation

of the reserve becomes profitable precisely when the seller cannot use the upward devia-

tion of the reserve (i.e., no previous bidders bid above the original reserve) — these two

dynamic deviations together also imply that the first-price auction has a profitable safe

deviation for the seller with probability 1 (Theorem 1).
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Finally, restricting to symmetric mechanisms in which only winners pay, we character-

ize all the static mechanisms that are credible (Theorem 4). They share three properties.

First, they are all first-price in the sense of Akbarpour and Li (2020): When a bidder

submits a message to a mechanism, they must know what price they will pay if they

win. Second, the message/bid space can be restricted in a way that is independent of the

seller’s cost (this is a generalization of the ex-ante set price floor). Third, they allow for

the seller to incorporate into the mechanism the realization of her cost only in a minimal

way via a walk-away option: If the best offer is below the seller’s cost, the seller would

keep the object (for example, via a practice known as secrete reserves).

Among such mechanisms, we show that the seller would always prefer to run an actual

auction than use a posted price (Proposition 1). However, as we show, the seller’s optimal

bid space no longer has a standard interval structure (even under a regular distribution)

but may involve substantial bid restrictions (Example 3). The seller’s credibility concern

leads to a pooling of bidder types that would not appear in the full-commitment solution.

Our model assumes that the auctioneer communicates privately and bilaterally with

each of the bidders, following Akbarpour and Li (2020). As we discuss in Section 4.1, an-

other way to escape our impossibility result is to allow for public announcements, where

the auctioneer publically announces what the reserve price is after privately observing

her cost. This public announcement would make the optimal first-price auction cred-

ible. It is a common institution in practice, perhaps precisely to avoid the credibility

issue that we highlight. However, in many cases, public announcements may not be fea-

sible, practical, or without costs. Moreover, as we discuss in Section 4.2, even with public

announcements, the first-price auction may still suffer a credibility concern where the

auctioneer deviates jointly with a bidder before the public announcement. We show that

the ascending auction continues to be credible with respect to this type of deviation and

satisfies what we call “strong credibility” (see Section 4.2).

1.1 Related Literature

We study credible auction design and uncover a series of dynamic deviations by an in-

formed seller. Our deviations imply an impossibility result for static auctions to achieve

both optimality and credibility. We show that the dynamic ascending auction can con-

tinue to credibly implement the optimal mechanism. Our model of credible auctions fol-

lows Akbarpour and Li (2020) who develop the notion of credibility using an extensive-
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form game framework.1 In Akbarpour and Li (2020), the first-price auction, English

auction, and Dutch auction are all credible. Among these auctions, we show that only

the English auction can continue to credibly implement the optimal mechanism when

the seller is privately informed. Unlike in Akbarpour and Li (2020), the deviations we

discover involve the manipulation of the timing and reserve prices during the auction.

Recently, Komo, Kominers, and Roughgarden (2024) build on the framework of Akbar-

pour and Li (2020) and Li (2017) to study shill-proofness and characterize the Dutch

auction as the unique “strongly shill-proof” auction among the optimal auctions.

We model the privately informed auctioneer following the literature on informed

principals (beginning with Myerson 1983; Maskin and Tirole 1990, 1992). In our set-

ting, if the auctioneer has full commitment power, then the privacy of her information

about the cost is irrelevant (Myerson 1985; Yilankaya 1999; Skreta 2011; Mylovanov and

Tröger 2014). However, we show that under credibility constraints, the seller’s private in-

formation is no longer irrelevant because it interacts with the potential deviations during

the process of the auction. Giovannoni and Hinnosaar (2022) consider a bilateral trade

setting where a seller with limited commitment learns about her cost after proposing the

contract, and show that the seller can nevertheless obtain the full-commitment payoff.

More broadly, this paper also connects to the literature on auctions and mechanism

design with limited commitment (Bester and Strausz 2001; Skreta 2006; Liu, Mierendorff,

Shi, and Zhong 2019; Banchio and Yang 2021). Unlike in the Coase-conjecture settings,

we model the seller’s limited commitment as deviations during the auction rather than

after the auction. Thus, unlike Doval and Skreta (2022), we do not have a revelation

principle and study instead various forms of dynamic deviations by an informed seller.

The remainder of the paper proceeds as follows. Section 2 presents the model. Sec-

tion 3 presents the results. Section 4 discusses public announcements and strong credi-

bility. Section 5 concludes.

2 Model

There are one auctioneer, a set of bidders N (with |N | > 1), and one good. Each bidder i

has a private value θi ∈Θi , and the auctioneer has a private cost θ0 ∈Θ0. We assume that

Θ0 = Θi = [0,1] for all i ∈ N . The distributions of the bidder values are symmetric and

have full support, with a continuously differentiable CDF denoted by F. We assume that

the value distribution is regular, i.e., θ − 1−F(θ)
f (θ) is strictly increasing. We also assume that

1The notion of credibility also appears in Dequiedt and Martimort (2015), though they impose the
restriction to revelation mechanisms (e.g., the auctioneer cannot communicate sequentially with bidders).
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the distribution of the seller’s costs has full support.

A mechanism is a map that specifies the extensive-form game the auctioneer would

run depending on her private information θ0:

M : Θ0→G

where G is the set of all finite-depth extensive-form games for the bidders.

Given a mechanism, let Ii(θ0) be the information sets available to bidder i ∈N , when

the auctioneer is of type θ0. Let

Ii :=
⋃

θ0∈Θ0

Ii(θ0)

be the union of all information sets of bidder i over the auctioneer’s type θ0.

An interim strategy σi : Ii → A for bidder i specifies an action a ∈ A for every bidder

i’s information set. An ex ante strategy Si : Θi → Σi for bidder i specifies an interim

strategy σi ∈ Σi for for every type θi . A protocol (M,SN ), where SN := (Si( · ))i∈N , is a

pair of a mechanism M and a strategy profile SN . A protocol (M,SN ) is Bayes incentive-

compatible (BIC) if for all θi ∈Θi

Si(θi) ∈ argmax
σi

Eθ−i ,θ0

[
u
M(θ0)
i (σi ,S−i(θ−i),θi)

]
,

where we define

uG
i (σi ,σ−i ,θi) := ui(x

G(σi ,σ−i),θi)

and ui(x,θi) denotes the utility of agent i with type θi given outcome x, and xG(σi ,σ−i)

denotes the outcome in game G when agents play according to (σi ,σ−i). A protocol (M,SN )

satisfies voluntary participation if for all i, there exists σ ′i that ensures bidder i does not

receive the good and receives a zero net transfer, regardless of σ ′−i . Throughout the paper,

we restrict attention to BIC protocols that satisfy voluntary participation.

Given a protocol (M,SN ), a messaging game is generated as follows: The auctioneer

can either choose an outcome or choose to send a message Ii ∈ Ii to an agent i ∈ N .

Agent i privately observes message Ii and chooses reply r ∈ A(Ii). The auctioneer privately

observes the reply r and repeats. We say that the auctioneer plays by the book if for every

θ0, (i) the auctioneer of type θ0 selects game M(θ0), and then (ii) the auctioneer contacts

players according to the prescription given by M(θ0).

Let S0 : Θ0 → Σ0 denote the auctioneer’s ex-ante strategy and σ0 ∈ Σ0 denote the

auctioneer’s interim strategy, when playing the above messaging game.

Given a promised strategy profile (S0,SN ), an auctioneer’s deviation strategy Ŝ0 is safe
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if, for all agents i ∈ N , and for all type profiles (θ0,θN ), there exists a pair (θ̂0, θ̂−i) such

that

oi
(
Ŝ0,SN ,θ0,θN

)
= oi

(
S0,SN , θ̂0, (θi , θ̂−i)

)
,

where oi denotes the observation of bidder i given a strategy profile and a type profile.

In particular, we assume that each bidder observes whether he wins the object and his

own payment.

A safe deviation Ŝ0 is profitable for autioneer type θ0 if

EθN

[
u0(S0(θ0),SN ,θ0,θN )

]
< EθN

[
u0(Ŝ0(θ0),SN ,θ0,θN )

]
,

where u0 denotes the auctioneer’s utility function given a strategy profile and a type

profile. We assume that the auctioneer maximizes the expected profit net of cost. A

protocol (M,SN ) is credible if there is no profitable safe deviation: for any safe deviation

Ŝ0, and any autioneer type θ0, we have

EθN

[
u0(S0(θ0),SN ,θ0,θN )

]
≥ EθN

[
u0(Ŝ0(θ0),SN ,θ0,θN )

]
.

An outcome in our setting is a winner (if any) and a profile of payments (y, tN ) ∈
(N ∪ {0}) ×RN

≥0. We assume that the transfers are nonnegative, i.e., the auctioneer does

not pay the bidders. We allow for randomized mechanisms, in which case the outcome

space is given by ∆
(
(N ∪ {0})×RN

≥0

)
, and the realization is privately observed by the auc-

tioneer.2 Given a protocol (M,SN ), we denote its induced allocation rule and transfer rule

as
(
ỹM,SN ( · ), t̃M,SN ( · )

)
: Θ0 ×ΘN → ∆

(
(N ∪ {0}) ×RN

≥0

)
. We suppress the dependency on

(M,SN ) and the randomization whenever it is clear.

Let

π(M,SN ,θ0) = EθN

∑
i∈N

t̃M,SN
i (θ0,θN )−1ỹM,SN (θ0,θN ),0 ·θ0


denote the auctioneer’s expected profit of protocol (M,SN ).

A protocol (M,SN ) is optimal if for any BIC protocol (M̂, ŜN ) that satisfies voluntary

participation, we have

Eθ0

[
π(M,SN ,θ0)

]
≥ Eθ0

[
π(M̂, ŜN ,θ0)

]
.

2A safe deviation is then defined as one where the auctioneer can provide an innocent explanation by
misreporting jointly on (θ0,θ−i , ε), where ε is the realization of the randomization, to bidder i that keeps
bidder i’s observation the same.
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A protocol (M,SN ) is static if, for each θ0, each bidder i has exactly one information

set and is called exactly once before any terminal history.

A protocol (M,SN ) is a first-price auction if (M,SN ) is static, and for each θ0, each

bidder i chooses a bid bi from a set Bi(θ0) ⊂R≥0 or declines to bid, such that

1. Each bidder i pays bi if he wins and 0 if he loses

2. If any bidder places a bid, then some maximal bidder wins the object. Otherwise,

no bidder wins.

Remark 1. Under our definitions, if the auctioneer were not to be constrained by credi-

bility, then the privacy of her cost would be irreverent. Indeed, an optimal mechanism in

our setting simply maps each cost type θ0 to a corresponding Myersonian optimal auc-

tion (e.g., a first-price auction with the cost-dependent Myersonian reserve). Similarly,

if the auctioneer did not have private information, our model would collapse to the one

studied in Akbarpour and Li (2020).

3 Main Results

In this section, we present our main results. Section 3.1 shows that, once the seller has

private costs, the optimal first-price auctions are not credible, and in fact no optimal static

mechanisms are credible. Section 3.2 relaxes the requirement of static mechanisms, and

shows the ascending auction continues to credibly implement the optimal mechanism.

Section 3.3 relaxes the requirement of optimal mechanisms, and characterizes the space

of all symetric credible static mechanisms.

3.1 Optimal Static mechanisms Are Not Credible

Our first result shows that, contrary to the case where the auctioneer’s cost is publically

observable, the optimal first-price auction is no longer credible. In fact, we will show a

stronger result: The seller has a profitable safe deviation with probability 1 — the seller

would always want to cheat regardless of the cost type and the bidders’ types.

Theorem 1. In any optimal, first-price auction, the seller has a profitable safe deviation with

probability 1.

Proof of Theorem 1. Suppose that (M,SN ) is an optimal, first-price auction. By optimality,

since the value distributions are symmetric and regular, for almost all θ0, the induced

allocation must be symmetric and deterministic almost everywhere. Then, for any bidder
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i, the interim expected payment is pinned down almost everywhere. Thus, the induced

bid by bidder i of type θi when the auctioneer is of type θ0

bi(θi ;θ0)

is pinned down up to a measure-zero set. In particular, bi(θi ;θ0) can be assumed to be

symmetric across bidders, denoted by b(θi ;θ0).

Moreover, because the bidder value distributions are symmetric and regular, there

exists a continuous, strictly increasing function r(θ0) such that b(θi ;θ0) = 0 if θi < r(θ0)

and strictly increasing in θi if θi ≥ r(θ0).3 Note also that we have

b(θi ; θ̂0) > b(θi ;θ0)

for all θ̂0 > θ0 and θi > r(θ̂0).4

Let b∗ be the maximal bid given by the first |N |−1 bidder. With probability 1, we have

either b∗ > r(θ0) or b∗ < r(θ0).

Case (A). Consider the case of b∗ > r(θ0). Note also that b∗ < 1 = r(1). Now, fix type θ0

and consider type θ0’s deviation of pretending to be θ̂0 such that

r(θ̂0) = b∗

and ask the last bidder to bid in the set B|N |(θ̂0). The existence of θ̂0 is guaranteed by

continuity of r( · ). We claim that this must be a strict improvement for the auctioneer.

There are two cases. First, consider case (i) where the last bidder has a value θ|N | that

is weakly below b∗. Then, the auctioneer would get revenue b∗ under this deviation. But,

even if the auctioneer plays by the book, she also gets the same revenue b∗, since

b(θ|N |;θ0) ≤ θ|N | ≤ b∗ ,

which means the maximal bid the auctioneer gets when playing by the book is b∗.

Now, consider case (ii) where the last bidder has a value θ|N | that is strictly above b∗.

3Indeed, r(θ0) is pinned down by r − 1−F(r)
f (r) = θ0, which has a unique solution since F is regular.

4To see this, note that by the Envelope theorem,

b(θi ;θ0) = θi −
1

Q(θi ;θ0)

∫ θi

r(θ0)
Q(s;θ0)ds

where Q(s;θ0) is the interim allocation probability. Under an optimal mechanism, we have that Q(s;θ0) =
F(s)|N |−1 for all s ≥ r(θ0) and hence the claim follows by noting that r(θ0) is strictly increasing in θ0.
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Then, we must have that

θ|N | > max
i,|N |

θi ≥ r(θ̂0) .

But then the last bidder would bid even more under the auctioneer’s deviation since

b(θ|N |; θ̂0) > b(θ|N |;θ0) .

Since case (ii) happens with a positive probability, the safe deviation is a strict improve-

ment for the auctioneer.

Case (B). Consider the case of b∗ < r(θ0). Fix any type θ0. We claim that there exists

some ε > 0 small enough that the auctioneer of type θ0 has a strictly profitable deviation

by mimicking θ̂0 = θ0 − ε to the last bidder.

Since the reserve price r( · ) is a strictly increasing, continuous function of the cost

type, it suffices to show that type θ0 wants to slightly decrease the reserve price to the

last bidder. Let r∗ := r(θ0) by the Myersonian reserve for type θ0. Note that

r∗ ∈ argmax
r

∫ 1

0
1θi≥r(r −θ0)f (θi)dθi

which by regularity of F implies that

−(r∗ −θ0)f (r∗) + (1−F(r∗)) = 0 .

Note that, under the deviation, when the auctioneer decides what reserve to charge to the

last bidder, the above is not the auctioneer’s objective function because the last bidder

would assume there are still |N | bidders in total. Instead, the objective is

W (r) :=
∫ 1

0
1θi≥r

(
bN (θi ;r)−θ0

)
f (θi)dθi ,

where the last bidder bids according to bN ( · ;r) that assumes there are |N | bidders. The

bidding function, by the Envelope theorem, is given by

bN (θi ;r) = θi −
1

Qi(θi ;r)

∫ θi

r
Qi(s;r)ds

for all θi ≥ r, where we have Qi(θi ;r) = F(θi)|N |−1 given the optimality of (M,SN ). Thus,

W (r) =
∫ 1

0
1θi≥r

(
θi −

1
F(θi)|N |−1

∫ θi

r
F(s)|N |−1 ds −θ0

)
f (θi)dθi .
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Therefore,

W ′(r) = −(r −θ0)f (r) +
∫ 1

r
f (θi)

( F(r)
F(θi)

)|N |−1

︸        ︷︷        ︸
<1

dθi < −(r −θ0)f (r) + (1−F(r)) .

Thus,

W ′(r∗) < −(r∗ −θ0)f (r∗) + (1−F(r∗)) = 0 .

Thus, the type θ0 auctioneer has a profitable deviation by slightly decreasing the reserve

to the last bidder (by mimicking a slightly lower θ̂0).

Remark 2. In the proof of Theorem 1, the profitable deviation by the seller is dynamic in

the sense that it depends on the information revealed during the process of the auction,

even though to each bidder, the deviation is indistinguishable to a static auction. This can

happen precisely because we allow the seller to have private information, which creates

uncertainty over the possible reserves the bidders may face even in a static mechanism.

The first-price auctions are a particular class of static mechanisms. However, our

second result, building on Theorem 1 and the results of Akbarpour and Li (2020), shows

a completely general impossibility result: There is in fact no static mechanism that is

optimal and credible, once the seller has private information.

Theorem 2. There exists no mechanism that is

(i) credible,

(ii) static, and

(iii) optimal .

Proof of Theorem 2. Suppose for contradiction that (M,SN ) is an optimal, credible, and

static mechanism. As in the proof of Theorem 1, by optimality, since the value distribu-

tions are symmetric and regular, the induced allocation rule must be deterministic almost

everywhere. Moreover, by credibility, the induced transfer rule t̃(θN ,θ0) must also be de-

terministic almost everywhere, by the argument for the proof of Theorem 1 in Akbarpour

and Li (2020).5

5Specifically, we can apply the same argument, treating the realization of the randomization device ε
as an opponent type profile θ−i . Intuitively, randomized transfers cannot arise under credibility because
the seller has a profitable safe deviation of always asking for the highest possible payment in the support
of the randomization.

12



Step 1. We first show a contradiction under the additional assumption that the mech-

anism (M,SN ) is also winner-paying, i.e., if for almost all θN and θ0, if t̃(θN ,θ0) , 0, then

ỹ(θN ,θ0) = i. Note that by optimality and winner-paying, for almost all θ0, the induced

allocations and transfers (ỹ( · ;θ0), t̃( · ;θ0)) must coincide with the Myersonian allocation

and transfers almost everywhere. Moreover, note that, for almost all θ0,
(
M(θ0),SN |IN (θ0))

must be credible, static, and winner-paying. By Theorem 2 in Akbarpour and Li (2020),

for almost all θ0,
(
M(θ0),SN |IN (θ0)

)
must be a first-price auction almost everywhere.

Thus,
(
M,SN

)
must be a first-price auction almost everywhere. But Theorem 1 implies

that
(
M,SN

)
cannot be credible. A contradiction.

Step 2. We now prove the result without the assumption of winner-paying. In partic-

ular, we claim that any optimal, credible, and static mechanism must be winner-paying

in our setting. This involves two sub-steps.

Step 2(i). We first claim the auctioneer’s payoff for each cost type θ0 cannot exceed

1 − θ0. Note that credibility implies that the auctioneer of type θ0 has no incentive to

mimic another type θ̂0 when selecting which game G to run. By the Envelope theorem,

this implies that

U (θ0) =
∫ 1

θ0

Q(s)ds+U (1) ,

where U ( · ) is the equilibrium utility of the auctioneer and Q( · ) is the probability of trade,

which is pinned down by optimality. Therefore, the auctioneer’s expected payoff is

E
[
U (θ0)

]
= E

[∫ 1

θ0

Q(s)ds
]

+U (1) .

But under any optimal, first-price auction, the auctioneer’s expected payoff isE
[∫ 1

θ0
Q(s)ds

]
,

and hence by optimality, we must have U (1) = 0. This immediately means that

U (θ0) =
∫ 1

θ0

Q(s)ds ≤ 1−θ0 .

Step 2(ii). Now, suppose for contradiction that an optimal, credible, and static mech-

anism (M,SN ) is not winner-paying. Then there exists some auctioneer type θ̂0 and a

positive-measure of type profile θN such that the type-θ̂0 auctioneer gets strictly positive

payment from some losing bidder j , ỹ(θN , θ̂0). Specifically, define K ⊂ΘN as

K :=
{
θN : ∃j ∈N s.t. ỹ(θN , θ̂0) , j and t̃j(θN , θ̂0) > 0

}
,
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which has a positive measure. Let δ := E
[
1θN∈K

∑
j,ỹ(θN ,θ̂0) t̃j(θN , θ̂0)

]
> 0 denote the ex-

pected payment the auctioneer of type θ̂0 gets from the losing bidders.

Now, consider any auctioneer type θ0 > 1 − 1
2δ. By Step 2(i), if playing by the book,

then the autioneer of type θ0 can get at most 1 − (1 − 1
2δ) = 1

2δ. However, consider the

following deviation by type θ0:

• Run the game Ĝ = M(θ̂0)

• If the outcome is such that no losing bidder pays the auctioneer, then tell every

bidder i that there exists some other bidder j who played according to type θ̂j = 1.

• Otherwise, collect the payments from the losing bidders, and tell the winner that

there exists some other bidder j who played according to type θ̂j = 1.

Note that this deviation is safe. Moreover, by the optimality of (M,SN ), when following

this deviation, the auctioneer would keep the object almost surely and collect the positive

payments from the losing bidders. Thus, the expected payoff from this deviation is at

least δ > 1
2δ. So (M,SN ) cannot be credible. A contradiction.

Therefore, if (M,SN ) is optimal, credible and static, then (M,SN ) must be winner-

paying. But, by Step 1, there is no such mechanism, concluding the proof.

Remark 3. As the proof of Theorem 2 shows, with private costs, the seller also has the

temptation of walking away from the auction to collect payments from the losing bidders

— hence, credible auctions must be winner-paying. But we also know from Akbarpour

and Li (2020), any such static auctions suffer from the deviations of manipulating the

transfers, e.g., misrepresenting the second-highest bid in the second-price auction, unless

it is a first-price auction. But we have just shown in Theorem 1 that the optimal first-price

auctions are not credible due to the dynamic deviations of manipulating the reserves —

hence, an impossibility.

3.2 Credibility of Optimal Dynamic Mechanisms

Given the impossibility result (Theorem 2), to maintain credibility, an informed seller

must give away the possibility of either having a static auction or an optimal auction.

Our third result shows that if the auctioneer can use dynamic mechanisms, then she

can still obtain the optimal profit using a credible mechanism. In particular, she can do

so by running an ascending (English) auction.
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We say that a protocol (M,SN ) is an ascending auction if
(
M(θ0),SN |IN (θ0)

)
is an

ascending auction as defined in Akbarpour and Li (2020),6 for each auctioneer type θ0.

In particular, for each θ0, the bid space of agent i is just Θi , which is assumed to be

discrete. We also assume the auctioneer’s type space is also discrete. The reserve prices

are captured by the initial bid for each agent i.

Theorem 3. There exists an optimal, credible mechanism. In particular, an optimal, ascending

auction is credible.

Proof of Theorem 3. We use a similar argument as in Akbarpour and Li (2020). Note that,

in an ascending auction, the misrepresentation of the auctioneer’s type and any opponent

type would not change the optimal strategy used by bidder i. Specifically, suppose that

(M,SN ) is an optimal, ascending auction. Then for each i, Si specifies the strategy of

quitting the auction if and only if the running bid is above agent i’s type θi . Let S ′0 be any

safe deviation. Note that the bidder’s strategy Si is also a best response to (S ′0,S−i).
7

Now suppose for contradiction that there exists a safe deviation S ′0 that is profitable

for some auctioneer type θ∗0. Then consider the auctioneer’s strategy Ŝ0 defined by play-

ing according to S ′0(θ∗0) if the auctioneer’s type is θ∗0, and playing according to S0(θ0)

otherwise. Clearly, Ŝ0 is also a safe deviation. Then the strategy profile (Ŝ0,SN ) would

induce a BIC mechanism as argued above. But this implies that we have found a BIC

mechanism that yields a strictly higher expected profit than (M,SN ) when averaging over

seller’s types θ0 (recall we have finite types), contradicting that (M,SN ) is optimal.

Remark 4. While the proof of Theorem 3 is concise, it is perhaps surprising that our

deviation for the first-price auction that involves the manipulation of the reserve prices

no longer works for the ascending auctions. To understand the intuition, suppose that we

have two bidders. Suppose that the seller knows that bidder 1 has stayed in the ascending

auction for a while with the clock rising to a b1 higher than the seller’s cost. Even though

it might be tempting to conclude that the seller should treat b1 as the new cost to set

the reserve price for bidder 2 (assuming that the seller has not called bidder 2 yet), it is

not optimal to do so. This is because the seller can go back to bidder 1 in the ascending

auction. The optimal thing is to ask bidder 2 if he is willing to beat b1 and then run an

auction between him and bidder 1. If the seller could not go back to bidder 1, as in the

first-price auction, then she would have reason to inflate the winning bid. But here the

6See Definition 14 in Akbarpour and Li (2020). For details, see Appendix B.
7See Lemma 3 of Akbarpour and Li (2020). In Appendix B, we also formally prove a generalization of

their Lemma 3 and use it to show “strong credibility” of the optimal ascending auction (see Section 4.2).
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seller always has an incentive to go back, and even after such a deviation, she intends to

continue as if it were an ascending auction.

As the above discussion suggests, the credibility of the English auction in our setting

relies on a few key features of the English auction, which may not be shared by other

dynamic mechanisms, e.g., the Dutch (descending) auction. The next example shows

that, contrary to the case where the auctioneer’s cost is publically observable, the optimal

Dutch auction may not be credible:

Example 2 (Optimal Dutch auction is not credible). There are two cost types c1 = 0, c2 =

0.7. There are two value types v1 = 1,v2 = 2 with equal probabilities. The Myersonian

reserves are r(c1) = 1, r(c2) = 2. For a fixed set of bidders N , the bidding function is

b(v1;r = 1) = 1, b(v2;r = 1) = kN

b(v1;r = 2) = 0, b(v2;r = 2) = 2

where kN → 2 as |N | → ∞. Pick some N ∗ such that kN ∗ ≥ 1.8. Suppose that we have |N ∗|
bidders. Consider the cost type c2. Consider the event that the first |N ∗| − 1 bidders stay

out of the auction given the reserve 2. Now, consider the safe deviation that, when facing

the last bidder, the autioneer pretends to be cost type c1 and sets reserve price r = 1. The

last bidder will bid 1 if low type and kN if high type, which means that the autioneer gets

profit

1× 1
2

+ kN ×
1
2
− 0.7 ≥ 1.4− 0.7 = 0.7 .

If playing by the book and setting r = 2 for the last bidder, the autioneer only gets 1
2 ×

(2 − 0.7) = 0.65 < 0.7. Hence, this deviation is profitable, and the Dutch auction is not

credible.

Remark 5. The deviation in Example 2 is different from our deviation for the first-price

auction. Indeed, our deviation for the first-price auction cannot work for the Dutch auc-

tion because the clock is running down — when bidder 1 sends a message “I will take

it at the current price”, it is already too late for the seller to use the bid to update the

reserve for bidder 2. Instead, the deviation in Example 2 considers the event where the

previous bidders have values lower than the Myersonian reserve, and then reduces the

reserve faced by the last bidder. Importantly, the last bidder does not know he is the only

one left — otherwise, the seller would optimally set the same reserve price regardless of

the number of bidders (Myerson 1981). In equilibrium, once the bidders anticipate this
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deviation, then they will shade their bids even more, eventually leading to a profit loss

for the seller due to her inability to commit.

3.3 Credible Static Mechanisms

Now, we relax the requirement of optimal mechanisms, and study the space of credible

and static mechanisms. In practice, static mechanisms (or ”sealed-bid auctions”) may

have other advantages such as saving communication costs. Under the assumption of

symmetry and winner-paying, our fourth result characterizes the space of credible static

mechanisms, and shows that it however significantly limits the flexibility of the seller.

Since we will be studying suboptimal mechanisms in this section (by Theorem 2),

we will be more explicit about randomized mechanisms. In particular, let ε ∈ [0,1] be

a randomization device and write ỹ(θN ,θ0, ε), t̃(θN ,θ0, ε) as the realized allocation and

transfer rules.

A protocol (M,SN ) is a pay-as-bid auction if, for each bidder i, there exists func-

tion bi(θi ,θ0) such that almost everywhere in ΘN × Θ0 × [0,1], if ỹ(θN ,θ0, ε) = i, then

t̃i(θN ,θ0, ε) = bi(θi ,θ0).

Lemma 1. Any static, credible mechanism must be a pay-as-bid auction.

Proof of Lemma 1. Note that for each θ0,
(
M(θ0),SN |IN (θ0)

)
must also be static and cred-

ible. Now, conditional on θ0, we apply Theorem 1 of Akbarpour and Li (2020) as fol-

lows: In particular, for each bidder i and type θi , we define θ̃−i := (θ−i , ε) as an auxil-

iary “opponent type profile.” Since the randomization ε is realized after the auctioneer

chooses the game, each bidder i observes no additional information about ε beyond his

outcome (whether he wins and his own payment), just like for the opponent type profile

θ−i . Therefore, the result follows by applying Theorem 1 of Akbarpour and Li (2020) to

the auxiliary opponent type profile, for each auctioneer type θ0.

Note that a pay-as-bid auction can still have outcomes that are dependent on the auc-

tioneer types in arbitrary ways. However, we now show that for symmetric and winner-

paying mechanisms, the credibility concern due to the seller’s own private information

will constrain such dependency in a stark way.

A protocol (M,SN ) is symmetric if, for each θ0, the induced allocation probability

q(θN ,θ0) :=
(
qi(θN ,θ0)

)
i∈N

:=
(
P
(
ỹ(θN ,θ0, ε) = i

))
i∈N
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is symmetric across the bidders. A protocal (M,SN ) is winner-paying if for almost all θN

and θ0, if t̃(θN ,θ0) , 0, then ỹ(θN ,θ0) = i.

A protocol (M,SN ) is a first-price auction with a walk-away option if (M,SN ) is static,

and for each θ0, each bidder i chooses a bid bi from a set Bi(θ0) ⊂ R≥0 or declines to bid,

such that

1. Each bidder i pays bi if he wins and 0 if he loses

2. If any bidder places a bid, then either some maximal bidder wins the object or the

object is kept by the autioneer. Otherwise, no bidder wins.

A first-price auction with a walk-away option (M,SN ) has a public bid space B ⊂ R≥0

if there exists B ⊂R≥0 such that Bi(θ0) = B for all bidders i and all auctioneer type θ0.

Two protocols (M,SN ) and (M ′,S ′N ) are outcome-equivalent if they induce the same

ex-post allocation and transfer rules, almost everywhere in ΘN ×Θ0.

Theorem 4. Any symmetric, winner-paying, static, and credible (M,SN ) is outcome-equivalent

to a first-price auction with a walkaway option and a public bid space, in which the seller walks

away if and only if the maximal bid is weakly higher than the cost.

Under symmetry and winner-paying, Theorem 4 shows that, once the seller is con-

strained by credibility, any static mechanism cannot depend on the seller’s cost in any ex

ante way before communicating with the bidder. Indeed, the bid space is public among

all bidders, and the mechanism depends on the cost only via the ex post comparison of

the seller’s cost and the maximal bid.

The proof of Theorem 4 is in the appendix. To illustrate the intuition, we first sketch

the key argument for why the bid spaces B(θ0) do not depend on θ0, assuming that the

mechanism (M,SN ) is a first-price auction where the bid spaces B(θ0) are discrete, and

that the seller never walks away.

To show a public bid space, it suffices to show that, regardless of the auctioneer’s type

θ0, in the bidding game that type-θ0 auctioneer runs, the symmetric bidding function

b(θi ;θ0) does not depend on θ0. Because the bidding function is monotone in θi , it then

suffices to show that the bid distribution G(θ0) does not depend on θ0.

The key idea is to prove by induction from the top. To illustrate, suppose that we have

two auctioneer types θ0 and θ̂0. Let G and Ĝ denote the two bid distributions associated

with θ0 and θ̂0, respectively. Let B and B̂ be the supports of G and Ĝ, respectively. We

assume that B and B̂ are finite, and write B = {b1, . . . , bn}, where b1 > · · · > bn, and B̂ =

{b̂1, . . . , b̂m}, where b̂1 > · · · > b̂m. We further denote the probability mass of G on bk by µk,

and similarly the probability mass of Ĝ on b̂k by µ̂k.

18



First, we claim that the top bid must be the same, i.e., b1 = b̂1. Suppose for contra-

diction that this is not the case, e.g., b̂1 > b1. Then, note that type-θ0 auctioneer has a

profitable safe deviation: First, elicit the bids from |N | − 1 bidders, and then mimic type

θ̂0 when facing the last bidder if the highest bid the auctioneer receives from the |N | − 1

bidders is already b1. Since this contradicts credibility, we have b1 = b̂1.

Second, we claim that the probability mass on the top bid must also be the same, i.e.,

µ1 = µ̂1. Suppose for contradiction that this is not the case, e.g., µ̂1 > µ1. Then, by the

previous step, type-θ0 auctioneer has the following profitable safe deviation: First, elicit

the bids from |N | − 1 bidders, and then mimic type θ̂0 when facing the last bidder if the

highest bid the auctioneer receives from the |N |−1 bidders is b2. Indeed, if playing by the

book, type-θ0 auctioneer has only a probability of µ1 to increase the highest bid from b2

to b1, but following this deviation, the auctioneer is strictly better off in expectation.

Now, we claim that b2 = b̂2. Indeed, if this is not the case, e.g., if b̂2 > b2, then by the

previous step, type-θ0 auctioneer has again a profitable safe deviation as before: First,

elicit the bids from |N | − 1 bidders, and then mimic type θ̂0 when facing the last bidder

if the highest bid the auctioneer receives from the |N | − 1 bidders is b2. This then implies

that we must also have µ2 = µ̂2. Indeed, if this is not the case, e.g., if µ̂2 > µ2, then type-θ0

auctioneer also has a profitable safe deviation: First, elicit the bids from |N | − 1 bidders,

and then mimic type θ̂0 when facing the last bidder if the highest bid the auctioneer

receives from the |N | − 1 bidders is b3.

Then, the induction argument continues and we must have bk = b̂k for all the bids in

the support, and µk = µ̂k for all the probability mass associated with the bids. Thus, the

two bid distributions G and Ĝ must be identical.

Remark 6. The actual proof follows this argument closely, after showing that the mech-

anism (M,SN ) must be outcome-equivalent to a first-price auction where the seller can

walk away. In addition, the actual proof generalizes the above induction argument to (i)

allow arbitrary bid distributions, which may or may not be discrete, and to (ii) incorpo-

rate that the auctioneer will walk away when the maximal bid is below her cost.

3.3.1 Maximizing Profits among Credible Static Mechanisms

Under symmetry and winner-paying, Theorem 4 asserts that, if the auctioneer uses static

credible auctions, then the only degree of freedom that the auctioneer has is the public

bid space B. The walkaway option by the seller can also be thought of as having a secret

reserve price.

In particular, Theorem 4 reduces the problem of maximizing profits over this class of
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mechanisms to be simply designing the public bid space B. The next result shows that

using an actual auction with a bid space |B| > 1 can always generate more profits than

using a posted price (|B| = 1):

Proposition 1. Consider any (M,SN ) that obtains the maximal expected profit among sym-

metric, winner-paying, static, and credible mechanisms. Then, (M,SN ) must be outcome-

equivalent to a first-price auction with a walkaway option and a public bid space B with |B| > 1.

Proof of Proposition 1. By Theorem 4, any such protocol (M,SN ) is equivalent to a first-

price auction with a walk-away option and a public bid space B in which the seller walks

away if and only if the maximal bid is below the cost.

Suppose we use a posted price mechanism, i.e., |B| = 1, in particular, B = {b0} for

some b0. We construct an improvement. Let B̃ = [b0,1]. There exists some equilibrium

given this public bid space. In particular, for any bidder i and type θi ≥ b0, the type

will participate and submit some bid b(θi) ≥ b0. Since the seller has the option to walk

away, the expected profit must be increased because realization by realization, the profit

is increased:

1maxi θi≥b0
max

{
b0 −θ0,0

}
≤ 1maxi θi≥b0

max
{
b(max

i
θi)−θ0,0

}
.

Hence, the original mechanism cannot attain the maximal expected profit. Since this

holds for any posted price mechanism, the result follows.

However, which public bid space B is optimal for the auctioneer generally depends

on the details of the environment. If the auctioneer never walks away upon observing

the bids, then it is easy to see that the optimal bid space B is given by an interval [R∗,∞),

where R∗ is the Myersonian reserve with respect to the average cost E[θ0].8 However, per-

haps surprisingly, the next example shows that the seller can benefit from restricting bids

in a way to induce some pooling over bidder types and then walking away sometimes:

Example 3. Suppose that we have two bidders and the values θi ∼ U [0,1]. Suppose that

the seller’s cost θ0 is either 0 or 0.5 with equal probabilities. The Myersonian reserve for

the average cost type E[θ0] = 0.25 is given by R∗ = (1 + 0.25)/2 = 0.625. The expected

8To see this, note that for any interim allocation rule where Q(θi ;θ0) = Q(θi), we can write the expected
profit as |N | ·

∫ 1
0 Q(θi)

(
MR(θi) − θ0

)
dF(θi)dG(θ0) = |N | ·

∫ 1
0 Q(θi)

(
MR(θi) − E[θ0]

)
dF(θi), where F is the

CDF for θi , G is the CDF for θ0, and MR(θi) is the Myersonian virtual value. The regularity of the value
distribution then implies that the optimal interim allocation rule is given by the “assortative matching”
rule up to a threshold type defined by MR(θi) = E[θ0].
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profit for the seller using the first-price auction with the public bid space [0.625,∞) is

2 ·
∫ 1

0.625

(
MR(θi)− 0.25

)
·Q(θi)dθi = 2 ·

∫ 1

0.625

(
2θi − 1.25

)
·θi dθi ≈ 0.246 .

However, consider a first-price auction with a public bid space

B = {0.5} ∪ [0.625,∞)

where the seller of type θ0 = 0 never walks away and seller of type θ0 = 0.5 walks away

for the bid b = 0.5. The equilibrium of this auction is characterized by a threshold type

θ∗ who is indifferent between bidding 0.5 and bidding 0.625, i.e.,

(
θ∗ − 0.5

)
· 1

2
·
(1
2
· (θ∗ − 0.5) + 1 · 0.5

)
=
(
θ∗ − 0.625

)
· 1 ·θ∗ .

Then, we have θ∗ ≈ 0.717. The expected profit for the seller is then given by

2·
∫ 1

0.717

(
MR(θi)−0.25

)
·θi dθi+2·1

2
·
∫ 0.717

0.5

(
MR(θi)−0

)
·
(1
2
·(0.717−0.5)+1·0.5

)
dθi ≈ 0.263 ,

which is strictly higher than the seller’s profit under the bid space [0.625,∞).

Remark 7. In Example 3, the optimal bid space must be restricted to induce some pooling

of bidder types: If the bid space is of the form [R,∞), where R ≤ 0.5, then the seller

can improve it by using [0.5,∞) (since MR(θi) ≤ 0 for all θi ≤ 0.5), but then it can be

further improved to be [R∗,∞) where R∗ = 0.625 as argued above. But that is dominated

by using the bid space {0.5} ∪ [0.625,∞) which induces a bunching of bidders at the bid

0.5. Intuitively, the seller introduces pooling at a lower bid to allow herself to walk away

credibly when her cost is realized to be higher than the maximal virtual value. With full

commitment, the seller can always do that using cost-dependent ex ante reserve prices,

but as we show credibility eliminates any ex ante dependency.

4 Discussion

4.1 Public Announcements

So far we have assumed that the seller communicates with each of the bidders privately.

One of the institutions used by auctioneers in some markets is public communication and

such institutions could help in the credibility of auctions as we now discuss.
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First, an obvious solution to the problem of credibility of the first-price auction with

an informed seller is for the seller to commit to announcing publicly the reserve price,

before communicating with any of the bidders. This kind of public auction would make

first-price auctions with optimal cost-dependent reserves credible.

Second, even if the seller could not announce publicly the reserve, even just announc-

ing publicly the moment all the bids have to be submitted could make the first-price auc-

tion credible. For example, the seller would first publicly announce that they will only

accept bids on Sunday at noon (as is the case in some real estate sales). Then, the seller

could communicate privately with every bidder the reserve price, without collecting any

information about bidder valuations or their willingness to bid above the reserve. Since

the seller would not collect responses from bidders before Sunday’s noon auction, there

would be no safe profitable deviation for the seller to the optimal first-price auction.

Third, public announcements could make many other auction formats credible as

well. For example, in the case of the sealed-bid second-price auction, public communi-

cation in the form of revealing after the auction all bids and the identities of the bidders

could make the second-price auction credible. (This is a common practice in the spec-

trum auctions run by the FCC in the US and by Industry Canada in Canada — there, while

identities of bidders are private during the auction, all bids and bidders are revealed pub-

licly after the auction, allowing bidders to verify that the complex auction rules, such as

computing VCG payments and “core adjustment” have been followed.) With such pub-

lic announcements, unless the auctioneer can “invent” bidders, second-price sealed bid

auctions would be credible.

In summary, the institution of public announcements that are often used in practice

can go a long way toward helping sellers design credible and revenue-maximizing auc-

tions. That said, public announcements of the kind described above are not always feasi-

ble, practical, or without cost. First, the seller may prefer to keep the very existence of an

auction secret, and contact only a small number of traders. Second, bidders, especially

losing bidders may prefer to have their valuations or even participation in the action se-

cret. Third, the time when the good becomes available for an auction may be random and

privately observed by the seller. Especially when combined with the desire to keep the

auction private, this could undermine strategies like “all bids are only accepted at noon.”

Finally, public communication can be costly.
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4.2 Strong Credibility of Ascending Auctions

So far we have assumed that the only credibility constraint is that the seller does not have

any safe deviation that is profitable. We did not consider other types of deviations. How-

ever, there may be other deviations that could create problems for running an auction

mechanism credibly.

One such deviation is a possibility that the seller could approach one of the bidders

and offer them a secret deviation to a different mechanism that is ex-ante beneficial to

both parties. Despite that not being a safe deviation, we may nevertheless be concerned

about the credibility of such an auction.9 Such deviations may be tempting to the seller

even in the presence of public announcements: while public announcements can be veri-

fied, it may be impossible for bidders to verify that the seller has not contacted any other

bidders ahead of time.

Formally, an auctioneer-bidder joint deviation strategy (Ŝ0, Ŝj) is safe if, for all agents

i ∈N , i , j, and for all type profiles (θ0,θN ), there exists a pair (θ̂0, θ̂−i) such that

oi
(
Ŝ0, Ŝj ,S−j ,θ0,θN

)
= oi

(
S0,SN , θ̂0, (θi , θ̂−i)

)
.

A joint deviation (Ŝ0, Ŝj) is mutually beneficial for auctioneer type θ∗0 and bidder j if:

EθN

[
u0(S0(θ∗0),SN ,θ

∗
0,θN )

]
< EθN

[
u0(Ŝ0(θ∗0), Ŝj ,S−j ,θ

∗
0,θN )

]
,

and for all θj , playing according to Ŝj(θj) is incentive compatible given
(
Ŝ0(θ∗0),S−j

)
and:

Eθ−j

[
uj(S0(θ∗0),SN ,θN )

]
≤ Eθ−j

[
uj(Ŝ0(θ∗0), Ŝj ,S−j ,θN )

]
.

We say that a protocol (M,SN ) is strongly credible if it is credible and for every bidder

j and seller type, there is no mutually beneficial safe joint deviation.

We argue that the optimal English auction (with reserve prices that depend on the

realized seller cost) is strongly credible. However, the first-price auction may not be

strongly credible even in the presence of public announcements.

For the first claim, note that as we argued before, the optimal strategies of bidders do

not depend on the seller’s announcement about reserve prices (unless their value happens

9One defense against such un-safe deviations is that even if they are beneficial to the bidder in this
auction, they can be detrimental to that bidder in the future or more generally undermine the credibility
of that seller in the eyes of that buyer, leading to long-term losses. However, the analysis of credibility of
auctions in repeated environments is beyond the scope of this paper.
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to be below the reserve price). Moreover, even if the seller learns something about the

valuations of a subset of buyers, the optimal continuation mechanism is to revert to the

English auction. See Appendix B for details.

For the second claim (that even with public announcements first-price auctions are

not strongly credible), return to the example from the introduction (Example 1). The

seller with a public announcement would implement the optimal first-price auction in

the following way: when they draw a cost of 0, they would announce that the bidders

can bid either 1 or 5
3 . When they draw a cost of 0.7, they would announce that only a bid

of 2 is allowed. If bidders believe that the seller will follow this mechanism, they would

bid b(1) = 1 and b(2) = 5/3 when the reserve is low and b(2) = 2 when the reserve is high.

However, even with public announcement, this mechanism is not strongly credible:

Example 4 (FPA with public announcements is not strongly credible). Consider the set-

ting of Example 1 and the public announcements as above. Consider the following de-

viation. Before the public announcement of the reserve, if the seller draws a low θ0, the

seller would approach bidder 1 and make them the following offer: You can bid either 1

or 1.48. If you bid 1, I will announce publicly the reserve price of 1. If you bid 1.48, I will

announce publicly a reserve price of 2. If the other bidder beats you, you lose. However,

if you bid 1.48 and the other bidder does not meet the reserve price of 2, I will secretly sell

you the good at 1.48 (in a private post-auction sale). This is clearly not a safe deviation,

but we argue that it is mutually beneficial for the buyer 1 and the seller. First, suppose

that the value of buyer 1 is 2. In the original mechanism that buyer expects a profit of

(2 − 5/3) × 3/4 = 1/4 (they pay 5/3 when they win and they win 3/4 of the time). In the

new mechanism, they get an expected profit of

(2− 1.48)× 0.5 > 1/4 .

So that type prefers this secret deviation. Moreover, this joint deviation strategy is incen-

tive compatible for the buyer: by misreporting that their value is 1, the buyer can lower

the reserve price to 1, as in the original mechanism, but that yields the buyer payoff 1/4,

lower than the payoff from following the proposed strategy.

Second, if the value of the buyer is 1, we return to the original mechanism and the

payoffs are the same. So for every type of buyer 1, this is an improvement (and reporting

true value is incentive compatible in this case too).

How about the seller? When buyer 1 has a value 2, the expected payoff in the original

mechanism is 5/3. In the new mechanism, it is (1.48 + 2)/2 = 1.74 > 5/3 (and when the
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value of buyer 1 is 1, the payoffs are unchanged).10

This example illustrates that even in case some announcements can be made publicly,

there are still some deviations (albeit, not fully safe), that could undermine the first-price

auction.

5 Conclusion

We study a seller with credibility concerns. We show that when the seller has private in-

formation about her cost, it is not possible to implement the optimal mechanism using a

static mechanism. As we show, even the optimal first-price auction is no longer credible.

We show that optimality requires a dynamic mechanism and that the English auction can

be used to credibly implement the optimal mechanism. In contrast, we show that the

Dutch auction may not be credible. We characterize all symmetric static auctions that are

credible: They are first-price auctions that depend only on the seller’s cost ex-post via a

secret reserve, and may profitably pool bidders via a bid restriction. Our impossibility re-

sult highlights the crucial role of public institutions, and helps explain the use of dynamic

mechanisms in informal auctions.

10If a reader is concerned that maybe this asymmetric mechanism is perhaps under commitment better
than the symmetric mechanism that we described before, note that the seller benefits only because they
keep the deviation secret from bidder 2: if bidder 2 understood this deviation, then when the reserve they
face is 1, they would bid 1 + ε when their value is 2, not 5/3, and that would reduce the seller expected
revenue.
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A Omitted Proofs

A.1 Proof of Theorem 4

Let (M,SN ) be a symmetric, credible, and static mechanism.

Step 1. We first make a sequence of observations about (M,SN ).

First, by Lemma 1, (M,SN ) must be a pay-as-bid auction. Without loss of generality,

also define bi(θi ,θ0) = 0 for any i and any (θi ,θ0) such that P(y(θi ,θ−i ,θ0, ε) = i) = 0.

Second, note that by assumption, (M,SN ) is also winner-paying.

Third, we claim that, under (M,SN ), the bidding function bi(θi ,θ0) must be sym-

metric, i.e., there exists b(θi ,θ0) such that bi(θi ,θ0) = b(θi ,θ0) for all i. By symmetry

of (M,SN ), the interim allocation probability

Qi(θi ,θ0) = Eθ−i [qi(θi ,θ−i ,θ0)]

must be symmetric across bidders, i.e., there exists some Q(θi ,θ0) such that Qi(θi ,θ0) =

Q(θi ,θ0) for all i. By BIC, for each bidder i, the interim expected payment is pinned down

by the interim allocation probability Qi , almost everywhere in Θi ×Θ0. But, since (M,SN )

is pay-as-bid and winner-paying, this implies that for all i and j

Qi(θi ,θ0)bi(θi ,θ0) = Qj(θi ,θ0)bj(θi ,θ0)

almost everywhere. Moreover, recall that we set bi(θi ,θ0) = 0 whenever Qi(θi ,θ0) = 0.

Hence, the bidding function bi(θi ,θ0) is symmetric across bidders almost everywhere.

Fourth, we claim that, under (M,SN ), any winner must have a maximal bid that ex-

ceeds the seller’s private cost, i.e., for all θ0 and all i, if y(θN ,θ0, ε) = i, then

b(θi ,θ0) ≥max
{
θ0,max

j,i
b(θj ,θ0)

}
,

almost everywhere. Suppose for contradiction that this is not the case. Then there exists

some θ0 and some bidder i such that the set

Q :=
{
(θN , ε) : y(θN ,θ0, ε) = i,b(θi ,θ0) < max

{
θ0,max

j,i
b(θj ,θ0)

}}
has a positive measure. But consider the following deviation by the auctioneer of type θ0:

• Run the game M(θ0)

• If y(θN ,θ0, ε) = i and b(θi ,θ0) < θ0, keep the object.
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• Otherwise, if y(θN ,θ0, ε) = i and b(θi ,θ0) < maxj,i b(θj ,θ0), allocate to bidder j with

the highest bid b(θj ,θ0), instead of bidder i, and charge bidder j a payment b(θj ,θ0).

This is clearly a profitable deviation. We argue that this is also safe. By symmetry, as

argued in the second observation, for any bidder i and any (θi ,θ0), there exist type profile

θ′−i and realization ε′ such that bidder i loses and pays zero. Moreover, for any bidder j

and any (θj ,θ0) such that b(θj ,θ0) > b(θi ,θ0) ≥ 0, we have P(y(θj ,θ−j ,θ0, ε) = j) > 0 by

construction of b. Hence, there exist some type profile θ′−j and some realization ε′ such

that bidder j wins and pays b(θj ,θ0). Thus, the deviation is safe. But then (M,SN ) cannot

be credible. A contradiction.

Fifth, we claim that, under (M,SN ), if the maximal bid exceeds the seller’s cost, then

the seller must allocate the object to some bidder, i.e., if maxi b(θi ,θ0) > θ0, then

y(θN ,θ0, ε) , 0 ,

almost everywhere. Suppose for contradiction that this is not the case. Then there exists

some θ0 such that

Q′ :=
{
(θN , ε) : y(θN ,θ0, ε) = 0,max

i
b(θi ,θ0) > θ0

}
has a positive measure. But consider the following deviation by the auctioneer of type θ0:

• Run the game M(θ0)

• If y(θN ,θ0, ε) = 0 and maxi b(θi ,θ0) > θ0, allocate the object to bidder i with the

highest bid b(θi ,θ0), and charge bidder i a payment b(θi ,θ0).

This is clearly a profitable deviation. It is also safe by the same argument in the fourth

observation. But then (M,SN ) cannot be credible. A contradiction.

Step 2. Let

B :=
{
b(θi ,0) : θi ∈Θi , Q(θi ,0) > 0

}
.

We show that (M,SN ) must be outcome-equivalent to a first-price auction with a walk-

away option and the public bid space B.

The proof of this claim involves three substeps.

Step 2(i). First, for each θ0, let G(b;θ0) denote the CDF of the random variable

b(θi ,θ0). We claim that

G(s;θ0) = G(s;0)
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for all s ∈ [θ0,1]. To prove it, define

Φ(s;θ0) =
∫ 1

s
(b − s)dG(b;θ0) .

Fix any θ̂0 ∈ [0,1]. Let G0( · ) := G( · ;0) and Ĝ( · ) := G( · ; θ̂0). We first show that∫ 1

s
(b − s)dG0(b) ≥

∫ 1

s
(b − s)dĜ(b)

for a G0-measure-one set. Suppose for contradiction that this is not the case. Then there

exists a G0-positive-measure set S ∋ s such that∫ 1

s
(b − s)dG0(b) <

∫ 1

s
(b − s)dĜ(b) .

Now, consider the following deviation by the auctioneer of type 0:

• Run the game M(0)

• If the maximal bid of the first |N | − 1 bidder, maxj<|N | b(θj ;0), is in the set S, then

give the information set I|N |(θ̂0) to the last bidder.

Since S is a G0-positive-measure set, by symmetry and independence, the above event is a

G0-positive-measure set. For the last bidder, upon receiving the information set I|N |(θ̂0),

his payment-conditional-on-winning is b(θ|N |, θ̂0). For any maximal bid by the first |N |−1

bidders s, if playing by the book, by Step 1, we know that the auctioneer of type 0 gets

s+
∫

(b − s)1b≥s dG0(b) .

On the other hand, if following this deviation, by Step 1, the auctioneer gets

s+
∫

(b − s)1b≥s dĜ(b) ,

which is strictly higher whenever s ∈ S which happens with a positive probability. There-

fore, type-0 auctioneer has a profitable safe deviation, contradicting the credibility of

(M,SN ).

Now, note that

Φ(s;θ0) =
∫ 1

s
(b − s)dG(b;θ0) =

∫ 1

s
(1−G(b;θ0))db
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is a non-increasing and convex function in s, for any θ0. By continuity, we have that

Φ(s;0) ≥ Φ(s; θ̂0)

for all s ∈ supp(G0). We claim that we also have the same inequality for all s ≥min{supp(G0)}.
Suppose for contradiction that there exists some s ≥min{supp(G0)} such that

Φ(s;0) < Φ(s; θ̂0) .

Then s < supp(G0), and hence s must be in an open interval (s1, s2) ⊂ ([0,1]\supp(G0)) such

that s1 ∈ supp(G0) and s2 ∈ supp(G0). In particular, G0 is constant on the open interval,

and hence

Φ(s;0) =
s2 − s
s2 − s1

Φ(s1;0) +
s − s1

s2 − s1
Φ(s2;0)

We also know that

Φ(s1;0) ≥ Φ(s1; θ̂0) , Φ(s2;0) ≥ Φ(s2; θ̂0) .

But then

Φ(s; θ̂0) > Φ(s;0) =
s2 − s
s2 − s1

Φ(s1;0) +
s − s1

s2 − s1
Φ(s2;0) ≥ s2 − s

s2 − s1
Φ(s1; θ̂0) +

s − s1

s2 − s1
Φ(s2; θ̂0)

contradicting to the convexity of Φ( · ; θ̂0).

Similarly, we also claim that for all s ≥max{min{supp(Ĝ)}, θ̂0},

Φ(s; θ̂0) ≥ Φ(s;0) .

The proof is exactly symmetric to the above if min{supp(Ĝ)} ≥ θ0. Suppose min{supp(Ĝ)} <
θ0. Then, there exists a Ĝ-positive-measure event under which the maximal bid from the

first |N | − 1 bidders is strictly less than θ̂0. If that happens, the auctioneer of type θ̂0 can

deviate to give the last bidder information set I|N |(0). In order for this deviation not to be

profitable, we must have

Φ(θ̂0; θ̂0) ≥ Φ(θ̂0;0) .

For all s > θ0 such that s ∈ supp(G0), the same deviation as before yields the desired

inequality. For all s > θ0 such that s < supp(G0), the same convexity argument as above
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would also yield the desired inequality. Therefore, we have

Φ(s; θ̂0) ≥ Φ(s;0) .

for all s ≥max{min{supp(Ĝ)}, θ̂0}.
Combining these two sets of inequalities together, we have

Φ(s; θ̂0) = Φ(s;0) .

for all

s ≥max
{
min{supp(G0)},min{supp(Ĝ)}, θ̂0

}
.

Denote m0 = min{supp(G0)}, m̂ = min{supp(Ĝ)}. Consider first the case θ0 < max{m0, m̂}.
Then, because

Φ(s; θ̂0) = Φ(s;0) .

for all s ≥max{m0, m̂}, we must have

G(s; θ̂0) = G(s;0)

for all s ∈ [0,1]. Now, suppose θ0 ≥max{m0, m̂}, the same argument implies that

G(s; θ̂0) = G(s;0)

for all s ∈ [θ̂0,1]. Since θ̂0 is arbitrary, this proves the claim.

Step 2(ii). By BIC, b(θi ;θ0) is non-decreasing in θi for all θ0. By Step 2(i), for any θ0,

we have

max{b(θi ;0),θ0}
d= max{b(θi ;θ0),θ0}

Since both max{b(θi ;0),θ0} and max{b(θi ;θ0),θ0} are non-decreasing in θi , the above im-

plies that for any θ0, we have

max{b(θi ;0),θ0} = max{b(θi ;θ0),θ0}

almost everywhere in Θi . Now, we claim that the auctioneer can replicate the outcomes

by using another protocol (M ′,S;N ) that is a first-price auction with a walkaway option

and a public bid space B :=
{
b(θi ,0) : θi ∈Θi , Q(θi ,0) > 0

}
.
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Fix the measure-1 set of types on which

max{b(θi ;0),θ0} = max{b(θi ;θ0),θ0}

for all i ∈N . By Step 1, if

max
i
{b(θi ;θ0)} > θ0

then the object must be allocated to a maximal bidder for whom we have b(θi ;0) =

b(θi ;θ0). The auctioneer can follow the rules for tie-breaking in (M,SN ).11 This would

result in the same ex-post allocation and the same ex-post payment. By Step 1, if

max
i
{b(θi ;θ0)} < θ0

then the object must be kept by the auctioneer, hence resulting in the same allocation and

payment. If

max
i
{b(θi ;θ0)} = θ0

then let the auctioneer follow the same rule in (M,SN ) for allocating the object, which

would also result in the same allocation and payment.

Now, we claim that the strategy profile
{
b(θi ;θ0)

}
i∈N

continues to be BIC. Fix any bid-

der i. Note that if the auctioneer can announce the game m(θ0) := M(θ0) as a cheap-talk

message but just give the public bid space B for the bidder to choose, then bidder i would

have exactly the same information in (M ′,S ′N ) as in (M,SN ). In such a case, for each cheap-

talk message, fixing the opponent’s strategies {bj(θj ;0)}j,i , bidder i’s any strategy would

result in the same ex-post outcome as in (M,SN ), almost everywhere. Moreover, bidder

i has the same belief about (θ0,θ−i), and hence following the strategy bi(θi ;0) must be a

best-response. But then, since this strategy does not depend on the cheap-talk message

m(θ0), it must also maximize bidder i’s expected payoff even if bidder i does not observe

the cheap-talk message m(θ0). Hence, (M ′,S ′N ) would also be BIC.

Step 2(iii). Finally, we complete the characterization by noting that the event

max
i∈N

b(θi ;0) = θ0

can only happen with zero probability, given the independence of θ0 and θN . Therefore,

11Such tie-breaking can require cheap talk from the bidders to report their types.
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in (M ′,S ′N ), we may let the auctioneer walk away if and only if

max
i∈N

b(θi ;0) ≥ θ0 ,

while keeping the resulting outcomes to be equivalent almost everywhere.

B Ascending Auctions

In this appendix, for completeness, we give the formal definition of an ascending auction

following Akbarpour and Li (2020). We then show that optimal ascending auctions are

strongly credible.

B.1 Definition of Ascending Auctions

As in Akbarpour and Li (2020), we assume the type space is discrete to avoid modeling

continuous-time games. Let Θi := {θ1
i , . . . ,θ

K
i }, where θ1

i = 0 and θk+1
i − θk

i > 0, for all

i = 0,1, . . . ,N (including the auctioneer’s types).

We say that (M,SN ) is an ascending auction if for every θ0,
(
M(θ0),SN |IN (θ0)

)
satisfies

Definition 14 in Akbarpour and Li (2020).

B.2 Strong Credibility of Ascending Auctions

In this section, we provide a generalization of Lemma 3 in Akbarpour and Li (2020) which

will be used to prove the strong credibility of optimal ascending auctions.

Lemma 2. Let (M,SN ) be an ascending auction. For every bidder i, if (Ŝ0, Ŝj) is a safe joint

deviation such that j , i, then Si is an ex post best response to (Ŝ0, Ŝj ,S−{j,i}) for all θ0 and θ−i .

Proof of Lemma 2. Let (Ŝ0, Ŝj) be a safe joint deviation. Take any type θi . We claim that

any deviating strategy Ŝi(θi) cannot yield strictly higher payoff for type θi .

Suppose that Si(θi) and deviating strategy Ŝi(θi) choose different actions for the first

time after receiving message Ii . There are three cases to consider; we will show that, in

each case, Ŝi(θi) is not a profitable deviation for every possible realization of θ0 and θ−i .

Case 1: Suppose at Ii strategy Ŝi chooses the quit action, thus receiving zero utility. Since

(Ŝ0, Ŝj) is safe and ascending auction has threshold pricing, the strategy Si must obtain

weakly positive utility by accepting, so the deviation is unprofitable.

Case 2: Suppose at Ii strategy Si quits while deviation Ŝi accepts. Following the same
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logic as in the proof of Lemma 3 of Akbarpour and Li (2020), we can find plausible

explanations θ̂0, θ̂−i and agent type θ̂i such that

oi(Ŝ0, Ŝj , Ŝi ,S−{j,i},θ0,θN ) = oi(S0,SN , θ̂0, (θ̂i , θ̂−i)) .

If ỹ(θ̂i , θ̂0, θ̂−i) , i, then the deviation is clearly unprofitable by threshold pricing. Now

suppose ỹ(θ̂i , θ̂0, θ̂−i) = i. However, note that ỹ(θi , θ̂0, θ̂−i) , i since Si(θi) can also reach Ii
and specifies agent i to quit. But then the misreport θ̂i induces the agent to win the object

and pay t̃i(θ̂i , θ̂0, θ̂−i) > θi by threshold pricing and orderly property of the ascending

auction, so the deviation is unprofitable.

Case 3: Suppose at Ii the two strategies decide to accept under two different actions.

Then, property 5b of the ascending auction guarantees that the two strategies generate

the same utility.

The following result strengthens Theorem 3 to the notion of strong credibility.

Theorem 5. There exists an optimal, strongly credible auction. In particular, an optimal,

ascending auction is strongly credible.

Proof of Theorem 5. Suppose that (M,SN ) is an optimal, ascending auction. By Theorem 3,

we know (M,SN ) is credible. Now, to prove strong credibility, suppose for contradiction

that there exists a safe joint deviation (S ′, Ŝj) that is mutually beneficial between the auc-

tioneer of type θ∗0 and bidder j.

Consider the following strategy by the auctioneer. If the auctioneer’s type is θ0 , θ
∗
0,

run the optimal ascending auction as in S0. If the auctioneer’s type is θ∗0, deviate to

S ′(θ∗0) and ask bidder j to play according to Ŝj . By the definition of mutually beneficial

deviation, Ŝj must be optimal for bidder j to play against (S ′(θ∗0),S−j). Moreover, by

Lemma 2, we also know that Si is a best reply to (S ′, Ŝj ,S−{j,i}) even after knowing the

auctioneer’s type. Therefore, we know that(
S ′(θ∗0), Ŝj ,S−j

)
induces a BIC mechanism (where everyone knows the auctioneer’s type is θ∗0) that yields

the auctioneer a payoff strictly higher than what the auctioneer can obtain following

S0(θ∗0). But then if the auctioneer follows the above strategy, then the auctioneer can

guarantee an expected payoff in a BIC mechanism that is strictly higher than what she

could obtain in the optimal, ascending auction (recall we have discrete types), contradict-

ing that the ascending auction is optimal.
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