Controlling the Conversation®

Martino Banchio Bing Liu Andres Perlroth
Bocconi, IGIER Stanford Reddit
Google Research

February 10, 2026

Abstract

We study how AI assistants design their conversations. An assistant, with a pri-
vate objective, guides a user through her search via sequential queries, modeled as
partitions of the search space. The user selects the subset with the highest average
value. Using a prior-free framework, we minimize the platform’s regret relative to

an omniscient benchmark. We provide an optimal randomized policy that achieves

1
n-1’

as a sequence of “recommendations”, that is, the Al sequentially proposes candidates

bounded regret of where 7 is the number of items. This policy is implemented

from the item set until one is accepted.

1 Introduction

The rise of Large Language Models (LLMs) and conversational assistants represents a
paradigm shift in how users discover content and make decisions. Unlike traditional
search engines that present a static list of results, a conversational assistant interacts with
the user sequentially. To help a user find their desired outcome, the assistant asks ques-
tions to clarify the user’s intent. For example, when a user asks for a restaurant recom-
mendation, the assistant effectively narrows down the search space by asking, “Are you
looking for a casual dinner or a fine dining experience?”

This process of eliciting intent has an algorithmic flavor. In this paper, we model
each question by the assistant as a partition of the set of possible items. The user, who

has some intrinsic value in mind, chooses the element of the partition with the largest

*A substantial portion of the work was developed while all authors were at Google Research.

average value. Through this selection, the assistant gleans some insight into the user’s
preferences, allowing it to ask a follow-up question and zooming in further until a final
item is selected.

A nuanced dynamic emerges when the platform considers objectives that extend be-
yond the user’s immediate selection. While the user naturally seeks to maximize their
idiosyncratic private value v, the platform may operate under an objective function 7
that captures broader, community-oriented goals. For instance, = may represent a com-
mitment to safety, fairness, or the long-term health of the information ecosystem. By
prioritizing diversity, the platform can ensure users are exposed to a balanced perspec-
tive and high-quality sources. In this paper, we model this interaction abstractly as a
platform optimizing a utility 7 distinct from the user’s utility v, under uncertainty about
v. We focus on the theoretical properties of such conversational guidance.!

We model the optimal steering of a conversation within this theoretical framework.
The AI perfectly observes its own payoffs © = (my,..., ;) for the n items, but does not ob-
serve the corresponding private values v = (vy,...,v,) of the user. The interaction between
the Al and the user proceeds in stages. The user, who is initially agnostic about all items,
is presented sequentially with partitions of the item set, i.e. questions. Upon observing
the average value of each element of the partition, the user selects the partition element
with largest average value. The conversation continues until the user selects a single-item
partition, which corresponds to a final decision.

By choosing a fully contingent plan of questions (i.e., partitions of the item set), the
platform aims to minimize the gap between the payoff r; of the item eventually chosen
by the user and the payoff 7" of the best item the user could have chosen under some
sequence of questions. That is, the platform maximizes the competitive ratio against an
“omniscient” benchmark, where the Al can partition items with full knowledge of the
value profile v. We construct this optimal policy for the Al platform.

While the space of policies grows super-exponentially in the number of items, we first
show that it is sufficient to consider a much smaller set of policies, which we refer to as
recommenders. A question is a recommendation if it induces a binary partition where one
of the items of the partition is a singleton. In words, a recommendation asks the user: “Do
you want this item, or something else?” Recommenders are policies where each question

is a recommendation. That is, the platform proposes an item in every turn, and the user

LOf course, allowing platforms to steer user conversations should be done with the utmost care, ensur-
ing a high quality experience for the user. This paper should be viewed as a theoretical exercise, and we
are not making any claims as to the practicality of the policies we derive in this paper from a regulatory or
policy perspective.

“peels” at the set of items, sequentially.

We then characterize the optimal deterministic policy, which boils down to the order
in which the items are recommended to the user. Unfortunately, the competitive ratio
of this policy can be arbitrarily low. That is, we can construct examples where the ratio
between the value delivered by this policy and the value of the omniscient policy is arbi-
trarily close to zero, for any number of items. It is then natural to turn to randomization.
We construct an optimal randomized policy, which is simply a sequence of randomized
recommendations. The policy is fully described by a linear program, and it achieves a
bounded competitive ratio of ﬁ, where n is the number of items. This bound is tight
among all randomized policies.

Finally, we propose two further improvements to the optimal policy. First, we extend
this optimal policy to a sequentially optimal one: the algorithm randomizes in every
turn, minimizing the conditional competitive ratio at every stage of the conversation.
Second, we accommodate outside options for the user. This requires more variety in the

recommendations of the platform, which in turn reduces user churn.

1.1 Related Work

Our work contributes to the active literature on the design of conversational search sys-
tems and the emerging economics of advertising in Large Language Models (LLMs). The
early work of Radlinski and Craswell (2017) conceptualized conversational search as a
multi-turn process where the system must model user intent dynamically. For a survey
of the literature we refer the reader to Jannach et al. (2021). Unlike this literature, we
focus on the role of incentives in optimal conversation design. We abstract away from
many engineering challenges to capture the essence of a multi-turn conversation, and the
underlying tradeoffs stemming from the misalignment in incentives between platform
and user.

Within this literature we contribute to recent studies on the topic of "influenced" con-
versation steering. Much of the literature considers advertising as their primary motive
for steering, for example Bhawalkar et al. (2025). Along similar threads Banchio et al.
(2025) studies the optimal timing of advertising along the conversation, whereas this
work studies the platform’s direct influence on the conversation flow. Unlike our work,
Bergemann et al. (2024) assumes the user has private information about its preferences.
We assume that the conversation allows the user to discover its own preferences, making
the role of the conversation as a search tool explicit. Many works are then concerned with

the engineering aspects of conversational steering, starting with Duetting et al. (2024),

Dubey et al. (2024), and Soumalias et al. (2024).

Our work contributes to the rapidly evolving literature on algorithmic principal-agent
problems (Dutting et al. (2024)). Specifically, our framework is closely related to the del-
egation problem, where a principal seeks to influence an agent to take a specific action
on their behalf (Holmstrom (1980); Kleinberg and Kleinberg (2018)). While the standard
delegation model focuses on a principal who restricts the agent’s search space, our frame-
work introduces a dynamic decision process between the principal’s suggestions and the
agent’s subsequent decisions over those suggestions. Interestingly, a significant distinc-
tion arises regarding deterministic guarantees for the worst case scenario. While Klein-
berg and Kleinberg (2018) proves that for the delegation model a deterministic mecha-
nism exists achieving 1/2 of the optimal policy, in our dynamic model we show that no
protocol exists achieving a bounded guarantee over the optimal policy.

Finally, some recent work studies the dynamics of users interacting with LLM chat-
bots from an empirical perspective, see for example Jahani et al. (2024) and Lin (2025).
In particular, Werner et al. (2024) shows that LLM are indeed able to steer users in con-
versations. In this paper we take a normative perspective on the shape of the dynamics
of such interactions for a particular objective, and we provide a microfoundation for the
use of recommendations as a primary tool to direct search.

Our methodological approach contributes to the literature on online learning algo-
rithms. We model the conversation as a sequential discovery of the input, not unlike the
Pandora’s box search problem, but with a twist: the search order is determined by an

intermediary rather than the searcher herself.

2 Model

We consider a dynamic interaction between a platform (AI) and a user, centered on a set
of n distinct items, denoted by I = {1,...,n}. Each item i € I is characterized by two at-
tributes: a value to the platform, 7; € R,, and a private value to the user, v; € R,. We
assume the platform’s value is deterministic and known to the platform. Without loss of
generality, we index the items such that 7y > 7, > --- > 7. In contrast, the user’s val-
uation profile v = (vy,...,v,) is unknown to the platform (and to the user). We adopt a
prior-free approach, where the platform seeks to guarantee performance across all possi-

ble realizations of v.

2.1 The Conversation Protocol

The interaction proceeds in discrete rounds, representing a conversation where the plat-
form guides the user toward a final choice. At the beginning of the process (round ¢ = 0),
the active set of items is the full set I. In each round, the platform presents a “question”
to the user, modeled formally as a partition of the currently active set. The user then
selects one element from this partition, which becomes the active set for the subsequent
round. This process of refinement continues until the user selects a singleton set {i}, at
which point the process terminates, the user receives item i, and the platform accrues
payoff ;.

We model the user as ex-ante uninformed about the available choices and their values.
A user, when presented with a subset of items S C I, inspects it to costlessly learn the

average value of its objects, denoted by

v(S):= l;—l Zvi.

She cannot instead inspect each individual object s within the set, unless presented with
the singleton {s}. Faced with a partition P; of the current active set, the user acts my-
opically to maximize her immediate utility, selecting the subset S € P, with the highest
average value.? If multiple subsets share the maximum average value, ties are broken in
tavor of the platform.

Formally, the timeline is as follows: The platform initiates the conversation by offering
a partition P of I. The user selects S; € argmaxgsep, v(S). In the next round, the platform
presents a partition P; of §;, and the user selects S, € argmaxgep, v(S). This continues
until a singleton is chosen. With this mechanics we capture one aspect of conversational
search, that is, vague intent (large sets) being refined into specific choices (singletons) via

sequential queries.3

Remark. This conversation protocol has a desirable user-no-regret property: the user
never wishes she had chosen a different element of previous rounds’ partitions. To see

this formally, fix an algorithm P. In round ¢, the platform presents a partition P!, and the

2We use the average as a natural signal of the user’s value for a particular set of items. An alternative
way to interpret this model takes as primitive some taste parameters for the user and allows the conversa-
tional assistant to partition the set of items according to individual (or joint) taste profiles, as for example
with questions such as "Do you like blue or red shoes?"

3Naturally, we instead abstract away from many other interesting aspects of conversational search in
this theoretical model.

user chooses

Ste S).
argmaxv(S)

In round t + 1, the platform presents a partition P**! of S!. We say the user regrets her
round-t choice if there exists some S € P! such that every option available in round ¢ + 1

is weakly worse than S, with at least one strict loss; i.e.,
3SeP'st. VS eP™, v(S)>v(S’)and IS € P with v(S) > v(S).

Such regret cannot occur under our protocol. First, observe that by optimality of S?,
we have v(S?) > v(S) for all S € P'. Second, the total value in S’ is v(S’) - |S?|, whereas the

total value in each subset S’ is v(S’)-|S’|, and

> u(S)Is T =w(s") IS
S’ept+l
This implies that either V(S’) = v(S’) for all S’ € P**1, or there exists a S’ € P'*! such that
v(S’) > v(S"). In the former case, the first observation implies that the user has no regret.

In the latter, it is simple to see that the user has no regret, because v(S’) > v(S?) > v(S) for
all S € P.

2.2 Algorithms and Payoffs

A deterministic algorithm (or policy) P is a mapping that specifies the sequence of parti-
tions the platform presents, contingent on the user’s history of selections. Since the user’s
behavior is deterministic conditional on v, the realized path of the conversation and the
final item selected are fully determined by the algorithm P and the valuation profile v.
We denote the profit generated by algorithm P under profile v as (P, v).

We also consider randomized algorithms, denoted by p, which are probability dis-
tributions over the set of deterministic algorithms P. For a randomized algorithm de-
fined by a distribution p € A(P), the expected profit under valuation profile v is given
by Ep_,[n(P,v)]. Equivalently, a randomized algorithm induces a distribution over each

stage’s partitions conditional on the current active set.

2.3 The Omniscient Benchmark

To evaluate the performance of the platform’s policy, we benchmark it against an omni-

scient algorithm that knows the user’s valuation profile v ex-ante. The omniscient planner

seeks to partition the set I to maximize the platform’s value of the finally selected item,
subject to the user’s average-value selection rule.

For a fixed profile v, let S(v) = {i € I : v; > v(I)} be the set of items with value at
least the global average. It is straightforward to see that any item i S(v) cannot be the

outcome of a conversation starting with the full set.

Proposition 1. For any algorithm P, 7t(P,v) € {r; : i € S(v)}.

Proof. Suppose by contradiction that there exists an algorithm P such that nt(P,v) ¢ {r; :
i € S(v)}. Let j ¢ S be the item selected by the algorithm P. Let T be the termination
round of the algorithm where j is selected and let (S?);<r be the active set of items in each
round. Then it must be that

v =v(ST) 2 v(ST) >...v(S%) = v(I),

which implies that j € S(v), a contradiction.]

Conversely, an omniscient planner can structure a partition that isolates a specific
target item i* € S(v) against the rest of the items. Specifically, the partition P, = {{i*}, \
{i*}} ensures the user selects {i*} if and only if v;» > v(I \ {i*}), which is equivalent to v; >
v(I).

Thus, the maximum payoff achievable by an omniscient planner for a given realization
v is:

70 (v) = max 7t;.
ieS(v)
This benchmark represents the best the platform could achieve if it could perfectly “steer”

the user by exploiting its full knowledge of v.

2.4 Objective

The platform’s goal is to design a randomized algorithm that performs well against this
benchmark across all possible valuation profiles. We seek to maximize the competitive ra-
tio of the algorithm. We define the competitive ratio as the ratio between the performance
of algorithm p and the omniscient benchmark’s payoff. The competitive ratio then takes

the form

Our main theoretical contribution is the characterization of optimal randomized algo-

rithms, that is, algorithms that maximize this guarantee.

7

1EP~p[TC(P'v)]

Definition 1. An algorithm p is optimal if p € argmax, min,eg: =(0)

Additionally, we prove that the competitive ratio under such optimal algorithms is
bounded by nlj, and the bound is tight.

3 The Limits of Deterministic Steering

We begin our analysis by characterizing the performance of deterministic algorithms.
Recall that a deterministic algorithm is a tree of partitions, specifying the platform’s next
partition given any history of user’s choices. The space of algorithms is therefore quite
large. In any given recommendation step, the algorithm chooses one element of the set of
partitions of n items, whose cardinality (known as the Bell number) grows faster than n".

Our first observation instead simplifies the space of strategies we need to consider. We

focus on the following class of partitions that we call recommendations.

Definition 2. A recommendation is a partition of the form P = {{i}, S \ {i}}, where S is the

current active set.

In words, in a recommendation the platform isolates a single item i and asks the user,
“Do you want this item, or would you like something else?” If the user selects {i}, the
process ends. Otherwise, the conversation continues. The platform’s problem of search-
ing over recommendations is clearly much simpler, as the number of recommendations
grows linearly in n. We have already observed in the previous section that the omniscient
benchmark only requires a single recommendation. As it turns out, recommendations are
entirely sufficient for implementing the optimal algorithm. In this sense, our paper pro-
vides a microfoundation for recommender systems as conversation-steering techniques.
To show this result, in all our arguments we develop algorithms that rely solely on rec-
ommendations and we then prove that choosing any other partition at any stage of the
algorithm yields no higher competitive ratio.

Naturally, the central weakness of deterministic algorithms is their predictability.
Since v is unknown to the platform, any deterministic recommendation can be exploited

by an adversarial realization of values. We formalize this in Theorem 1.

Theorem 1 (Deterministic Worst-Case). For any deterministic algorithm P that does not
recommend item 1 in the first round there exists a valuation profile v such that the regret ratio

is:
n(P,v) m,

)

Proof. Consider the value profile v! that assigns value anl to the first item and value 1 to
item n, and zero value to all other items. By Proposition 1, the only implementable items
are item 1 and item n. Suppose algorithm P chooses some partition P = {P;, P;,..., P}
different than P; = {{1}, S\ {1 }}, and WLOG assume 1 € P; and n € P. If, by contradiction,
algorithm P had a competitive ratio different than 7;—’1‘, then it must be that n(P,vl) =774.
Hence, v(P;) > v(P,) for all i = 2,...,k. In particular, it must be that v(P;) > v(P). But
v(P) < ﬁ, with equality only if P, is a singleton, and v(F;) > -1, with equality only if
P, = S\ {1}, which is a contradiction.]

Any recommender that does not recommend item 1 in the first round incurs the worst
possible competitive ratio. Suppose instead that the platform commits to algorithm P,
which recommends item 1 (the most profitable item) in the first round. Then, consider a
profile of values v such that the value of item 7 is 1 and item 2 has value ﬁ Every other
item has value 0 to the user. Then, by Proposition 1 only items 2 and n are implementable.
When P recommends item 1, the user rejects it. With the smaller active set S, the set of
implementable items has now shrunk. Item 2 no longer beats the average value, and
hence any partition offered by P will eventually result in the user choosing item n, so
1(P,v) = m,. The omniscient benchmark could have implemented item 2 immediately,
and would have received payoff 7,, hence the competitive ratio of this policy is Z—Z > z—’;

The best regret ratio we can hope to achieve with a deterministic algorithm is therefore
Z—Z. In settings where the platform’s value gap is large (i.e., r,, < 7, < 71), the competitive
ratio of any deterministic policy can be arbitrarily close to zero. This motivates the need

for randomization.

4 Optimal Randomized Steering

To overcome the fragility of deterministic policies, we allow the platform to randomize its
questions. By mixing between different recommendations, the platform can “hedge” its
bets, ensuring that it captures high-profit items with some probability while protecting
against the worst-case scenarios where those items are rejected.

A randomized algorithm selects a partition distribution at each step. The optimal

policy is the randomized algorithm p that maximizes the competitive ratio

. 1EP~p[T((Plv)]
maxmin ———.
pv 7*(v)

Denote by p; be the probability that algorithm p recommends item i in the first round.

To characterize the optimal policy, we first define a set of adversarial profiles that the
algorithm needs to hedge against. Consider for each i the profile v(), such that

o =

l
o

,_\

](l 0 for all j & {i,n}.

Under profile v!) only items i and 1 are implementable. The omniscient benchmark al-

ways selects item i for a payoff 7v*(v(!)) = 7r;, hence the optimal algorithm’s performance
p’nJr(;—p’ﬂ” pi + (1 —p;)72. We claim that any optimal algorithm’s first round recom-

mendation must be the solutlon to the following linear program:

Maximize y

Subjectto p; +(1 —pi)% >y Viell,..., n}

1
n
) pi=1
i=1
p; >0 Vief{l,...,n}

In particular, the first constraint ensures that the competitive ratio is at least y for each
worst-case profile v().* To maximize y, the solution will satisfy these constraints with
equality for items in the support, as described by the result below. In particular, this
implies that p; > p, >--- > px > 0 for some k <n, and p; = 0 for all i > k.

Theorem 2 (Optimal Randomized Algorithm). The optimal randomized algorithm p recom-
mends an item i € {1,...,k} in the first round with probability p;, where the probabilities satisfy
the following equalizer condition for a constant y:

pi+(1—pi)%:y foralliel(l,...,k). (1)

1

Additionally, p; = 0 and Z—’: >y for all i > k. The value y is the maximum competitive ratio

achievable.

Proof. First, we prove that this algorithm indeed guarantees a competitive ratio of at least
V.

4The reader familiar with linear programming will recognize that the worst-case profiles v") are exactly
the dual variables for these constraints.

10

Let v be an arbitrary valuation profile, and let i be the item selected by the omniscient
benchmark, i.e. ©*(v) = ;. By Proposition 1 we know that v; > v(I). Our algorithm p
recommends item i with probability p;, hence the payoff from the algorithm is lower-
bounded as

Ep_p[n(P,v)] > pim; + (1 - p;);.

This is because in the worst case, once the first recommendation is made, the only imple-
mentable item is item n. Then the competitive ratio is lowerbounded by
_ Epp[(P,v)] J Pimit (1-pj)m,

Tt
=p;i+(1-pj)—=>y,
T(*(U) - 7Ti pl+(pl)ni —V

v(p)

where the last equality is by construction of the optimal algorithm in the theorem’s state-
ment.

Second, we prove that no other randomized algorithm g can achieve a better compet-
itive ratio. Let q; be the recommendation probabilities in the first round of algorithm g.
Suppose by contradiction that y(q) > y, that is, that q has a better competitive ratio than
the algorithm in the theorem’s statement. In particular, g’s performance on each profile

v} must be strictly better than p’s performance on each, hence
e
+(1—g;)— >
qi+(L=qi)7=>7

in particular for all i < k. Rearranging, we obtain

where the last equality comes from the theorem’s statement. Hence, for all i < k we have

q9i > Pi-
Its expected payoff ratio against v is clearly
IEQ~q[T((Q:7}(i))] _ q;7; + (1 —qi)T(n . (1 B)ﬁ
n*(v(i) T qi qi n; .

The competitive ratio of g is then no better than the performance on the hardest of these

instances, i.e.

i€l

. T[n
y(q) < mln(qi +(1- qi);i),

11

Suppose by contradiction that y(g) > y, that is, that g has a better competitive ratio than

the algorithm in the theorem’s statement. But then,

k k
=0 =0 =0

so g does not induce a well-defined distribution over first-round recommendations, which

is a contradiction. O

Interestingly, the optimal algorithm’s performance is fully determined by the first
round distribution over items. That is because the worst-case profiles v(!) are such that
the first round recommendation is all that is necessary.

To close the loop we prove that any algorithm that in the first round presents the user

with a non-recommendation partition suffers a worse competitive ratio.

Lemma 1. Any algorithm g placing positive probability on a deterministic, non-recommender

algorithm in the first round has competitive ratio larger than y.

Proof. Take any deterministic algorithm Q such that, in the first round, the partition
proposed to the user is Q@ = {Q,Q,,...,Q;} and it is not a recommendation. Suppose
that n € Q;. Because it is not a recommendation, it must be that |Qj| < n-1, hence
v(Q;) > anl for all worst-case profiles v/). This means that the algorithm never achieves a
better payoff than 7t, on any worst-case profile whenever the first round partition is not
a recommendation.
Let 1 — 4 be the total probability assigned by algorithm g to all non-recommender
algorithm. On the worst-case profiles v/) the competitive ratio of ¢ must be at most
Ty L
(=9 +ay
where 7 is the competitive ratio achieved by the recommenders conditional on being
selected by the randomization device.

If by contradiction g had better competitive ratio than p, then
TC . T
pi+(1-pi)—=y<y@<§y+(1-4§)—

TC; TC; '

Let g/ be the probability that the recommender portion of algorithm q recommends item

12

i in the first round. We can rewrite the above inequality simply as

TC TC TC
b (1-p)<dla+(1-g))+ (1 -G~ =
pi +(pl)ni<q(q,+(qz)ni)+< q)ni
TC TC TC
- 5(1 — g\ B 50
4q; +4(qz)nz + - qnl_
~) ~ln
:qqi+(1_ z)n:l

Clearly, since m; > m, this inequality is equivalent to 4q; > p;, which must hold for
all 7 in the support of the optimal policy. In particular then, summing over i we get
Y.:49; =q4).;q;>Y;p;i = 1. Since q; are probabilities, they sum to 1, so § > 1. But § was a
probability mass itself, hence 1 < 4§ <1 which is a contradiction.]

4.1 Performance Guarantee

The optimal policy’s randomization yields a significant improvement over the determin-
istic case. We have shown that the deterministic policy has arbitrarily low competitive
ratio. Instead the randomized policy achieves a uniform guarantee that depends only on

the number of items.

Theorem 3 (Bounded Competitive Ratio). The optimal randomized policy achieves a com-

petitive ratio of at least an1 That is, for any valuation profile v,

Ep_[n(Pv)] 1
7t (v) n—-1

The bound is tight.

Proof. The proof relies on the optimality conditions from the LP formulation of the op-

timal policy. If we denote 7;—’: by x;, the equalizer condition implies we can write the

probabilities p; for i = 1,...,k as p; = £=. The well-definiteness condition then requires

these probabilities to sum up to one:

Now, isolating v, we get

and hence
k-1

Zz 0 T—x; x,

The minimal value of y that satisﬁes this equation is achieved by minimizing the denom—
inator of the right hand side, Z

l-y=———

0 1 — . Note that each x; is between 0 and 1, s

This sum can then never be smaller than the number of individual terms, k. Substltutmg
this back, we get
-y = k- 1 < k-1
Zz 01- xl k

soy > % The support size of the randomization is at most n—1, because the last item can

always be achieved in later stages, hence y > nl—l

To prove tightness, fix 77, and consider the limit where 7y =---=m,_; =M and M —
oo. Then, x; — 0 for all i < n. The denominator approaches k = n—1 and y approaches
1 O
n-1°

Intuitively, the worst possible case for the platform is when all items have similarly
high profitability 7w except for the last one. Then, the best the platform can do is random-
ize uniformly among the n — 1 items, and settle for item n if she doesn’t get lucky in the
first period.

This result demonstrates that by strategically pooling items into a “something else”
option and randomizing the order of recommendations, the platform can secure a con-
stant fraction of the optimal value, regardless of the user’s private preferences. In other

words, the optimal randomized steering takes the form of a recommender.

4.2 Sequential Optimality

The optimal randomized algorithm p described in Theorem 2 is not unique: its regret
guarantee depends only on the algorithm’s first-round partition and is agnostic about
what it does thereafter. This is an artifact of the worst-case profiles v(!), where only the
first recommendation has any hope of steering the user away from item n. A designer who
aims to maximize the algorithm’s competitive ratio is hence indifferent to the algorithm’s
behavior after the first round.

To select among these optimal algorithms, let us consider an adaptive notion of com-
petitive ratio. To understand the idea, assume that the user rejects the recommended item
i in the first round. If we were in the ex-ante worst-case scenario, nothing the platform

does will steer the user away from item n. Yet, the platform may worry about its compet-

14

itive ratio at this decision node. That is, the platform may worry that the true profile v is
not one of the worst-case profiles v/) for j # i. The true profile v may allow an optimal
algorithm to implement an item j < n at this stage, and the platform should try to capture
that possibility.”

Formally, let us restrict our attention to recommendation policies, where at all rounds
the platform recommends a singleton against the remaining set of items. A history h; =
(r1,72,...,1;) is an ordered sequence of distinct items r; € I that have been recommended
by the platform and rejected by the user, up to round t. The set of all histories is H,j;, and
the empty history is denoted by hy = 0. Denote by h|; the restriction of history h to the
first i rounds, where i < |h|. Histories can then be identified with the set of rejected items,
and the set of active items at history & is denoted by S(h) =1 \ h. Histories constrain the
possible valuations. A valuation profile v is consistent with history hif v, <v(S(h|;_;)) for
any i € h. The set V(h) is the set of consistent valuation profiles, and the set of reachable
histories is H = {h € H,y | V(h) = 0}.

Using this formalism, a randomized algorithm is a mapping p: H — A(I) such that
for any history h the support of p(h) is contained in the active set S(h). We denote the
probability that this algorithm recommends item i at history h as p(h);. Given an algo-
rithm p and a valuation profile v, the conversation induces a probability distribution over
terminal outcomes, i.e. over items eventually chosen by the user. We denote this random

variable by p. The payoff of the algorithm can then be written as
E[n(p,v)].
In particular, the conditional expected payoff of the algorithm is simply
E[n(p,v) | h].

We are now ready to state our definition of sequential optimality.

Definition 3. An algorithm p is sequentially optimal if for every history h € H it maxi-

>The idea of hedging against such a moving target comes from viewing the decision maker as a pes-
simist. The decision maker worries about the worst-case scenario, even though the true state of the world
may be a completely benign profile v. As decisions are made, the omniscient benchmark evolves and hence
the “best” move for the algorithm moves as well. This reflects exactly the notion of subgame perfect equilib-
rium in a sequential-move zero-sum game. For a similar decision problem, see Malladi (2022) and Banchio
and Malladi (2024)

15

mizes the worst-case conditional competitive ratio

. E[n(p,v) | h]
peargnax W~ ww,h)

where 7*(v, h) is the highest implementable payoff 7t; such that j € S(h).

That is, a sequentially optimal randomized algorithm is an optimal randomized al-
gorithm that, after every user decision, maximizes the designer’s competitive ratio going
forward. By the same argument as in Theorem 2, an optimal randomized algorithm when
the user rejects item i will recommend one of the k’ most profitable items in I \ {i}, and
it will assign recommendation probabilities according to a similar linear program as the
one above. Repeating this step after each rejection yields the sequentially optimal ran-

domized algorithm.

Theorem 4 (Sequentially Optimal Randomized Algorithm). The sequentially optimal ran-
domized algorithm p

1. recommends an item i € {1,...,k} in the first round with the same probability p; as any

optimal randomized alogrithm.

2. If the user rejects the recommendation, the algorithm proceeds recursively on the remain-

ing set.

3. After each user rejection, the algorithm expands to recommend less profitable items (the
threshold index k increases with the round number), the recommendation probability for

each remaining item increases, and the contigent competitive ratio improves.

Proof. It is straightforward to see that p with properties 1 and 2 is sequentially optimal.
We show 3. Assume that in round ¢, the active set is I, the threhold index is k!. In round

t, the optimal recommendation probabilities (p!);cj: satisfy that

t
(p)icrt € arg max. 2 (2)
p,Y: Yict Pi=1, and for all iel?, pi+(1—pi)n—’lf2;/

and the contingent regret guarantee

yt:pf+(1—pf)%, for anyie[t and i <k'. (3)

1

For each y > 0, denote the feasibility set in round t F'(y):={p: Y ;c;:p; =1, and for all i €
I', pi+(1-p) 7t 2 7).

16

Assume that an item j € I' is recommended and the user rejects it, the platform

chooses recommendation probabilities (prrl)iert such that

t+1
(i Diertyj) € arg max Nz (4)
Py Liertyyjy pi=1, and for all iel'/{j}, pi+(1-pi) 3>y

For each y, denote the feasibility set in round ¢ + 1 by F'*(y). For each p € F(y), let

pi .
5 = pitgEr Piz0i#] (5)
1 0, pi=0,0ri=j

Then for each i € I'/{j}, p; + (1 _ﬁi)% >y, s0 p € F"1(y). Hence the contingent regret
guarantee in round f + 1, "1 > y!. By the equalizer condition (Equation (1)), the thresh-
old index k weakly increases and recommendation probabilities for each item i in the

active set I'/{j} weakly increases with a strictly positive increase for some items. O]

5 Extension

The model relies on two simplifying assumptions. First, we normalize the user’s outside
option (e.g., exiting the platform and buying elsewhere) to zero. This implies full par-
ticipation: regardless of how aggressively the platform steers, the user never prefers to
leave, so steering affects only which item is chosen rather than whether a choice is made
on-platform. Second, we assume the platform cannot hide items and can only design in-
formation through partitions. In the first round the user observes a partition of the full
item set I (not a strict subset), and in each subsequent round observes a partition of the
subset selected in the previous round. In this section we relax both assumptions by al-
lowing (i) a strictly positive outside option that can induce exit, and (ii) platform policies

that can restrict the displayed set in addition to coarsening information.

5.1 Outside Option

Assume that the user has a strictly positive outside option u > 0, which is private infor-
mation to the user. After observing any partition P, the user exits the platform (and the
platform obtains payoff 0) if for all S € P, v(S) < u.

With positive user outside option, there is an additional set of adversarial profiles that

the algorithm needs to hedge against in addition to (v();c;. Consider for each i the profile

17

vg), such that

(i)

i —u
(i

D =0 for all j =1.

v
v
]

Under profile v(()i) only items 7 is implementable. If the user is presented with a partition
P such that {i} € P, then the user stays on the platform and chooses i; otherwise, the user
leaves. In order to hedge against (vél))iel, the optimal algorithms need another class of

partitions that we call lists.

Definition 4. A list is a partition P such that [P| > 3 and P that contains at least one

singleton, i.e., there exists i such that {i} € P.

In words, in a list the platform shows the user at least 3 options with one of them
being a specific item. Note that by our definition, a recommendation is not a list since a
recommendation has size equal to 2. We say an algorithm lists item i if there is positive
probability the algorithm will show a list containing {i} to the user.

If an algorithm p recommends i with probability p; and lists i with probability p’, then

the algorithm’s performance for profile v/ is M—fpim

.) . i+p))mi+(1-p;—p:)0
mance for profile v(()l) js PitPOT n(pizp)
1

= p;i + (1 - p;)7* and its perfor-

1

= p; + p;. We claim that any optimal algorithm’s

first round partition must be the solution to the following linear program:

Maximize y (6)

Subjectto p; +(1 —pi)% >y Viell,..., n}
i

pi+p; =y Vie{l,...n)
p;<p’ Viell,...,n)

n
i=1
pip;=0 Vie{l,... n)

Again, the first two constraints ensure that the competitive ratio is at least y for each
worst-case profile v() and véi). The third and fourth constraints are feasibility constraints:
p’ is total probability that a non-recommendation partition is presented in the first round;
the third contraint requires each item i is listed with probabiliy lower than the total prob-
abiliy of a non-recommendation partition is presented.

To maximize y, the solution will satisfy these constraints with equality for items in the

support, as described by the result below. In particular, this implies that p; > p, > -+ >

18

pr >0 forsomek <n,p;=0foralli>k;and p; =p’=1-) ;p;foralli >k, p; €[p’—p;,p’]
for all i <k.

Theorem 5 (Optimal Randomized Algorithm with Positive User Outside Option). The
optimal randomized algorithm p recommends an item i € {1,...,k} in the first round with
probability p;, lists all items j € {k+1,...,n} in the first round with probability p’, and lists an
item i € {1,...,k} in the first round with probability p; € [p’ — p;,p’]. The probabilities (p;);<i
and p’ satisfy the following equalizer condition:

pi+(1—pi)%:p’ forallie(l,... k). (7)
i

Additionally, p; = 0 and Z—’: > p’d for all i > k. The value p’ is the maximum competitive ratio

achievable and has the following expression

TC
1+ ZiSk 7-[{—7;1”

-~ T.v
1 + Zlfk 7'[1'—17'(,1

/

p

where the optimal threshold index k

T
L+ ik -,
k € argmax R
k'<n 1+ Ziﬁk’ —ni_nn

Proof. Let the value for the linear programm Equation (6) be y*. We first show that y* is
the maximum competitive ratio. Then we show that the any algorithm p satisfying the
conditions in the theorem solves the linear programm Equation (6) and achieves maxi-
mum competitive ratio y".

Let g be any algorithm with recommendation probabilities (g;);c; and listing proba-
bilities (q’);e; such that y(g) > p*. Then it has to be that for all i € I, the competitive ratio
of g against profile v(?) is strictly higher than y*, that is,

T(n *
qi+(1_Qi)Tc_i>7/’

and the competitive ratio of g against profile véi) is also strictly higher than y*, that is

qi+q;> 7"

In addition, q is feasible such that }; g; + max; g; < 1. Then the probabilities (q;)ics, (4})ier

and q’ = max; gq; are a feasible solution to the linear program (6) and hence y* cannot be

19

the value of the linear program (6), a contradiction.

Instead, let us show that a p satisfying the condition (7) in the theorem solves the
linear program (6). It is straightforward to see that the probabilities (p;)ic;, p” and (p})ie;
are a feasible solution to (6), and p’ is the value achieved. We show that p’ = y*.

Suppose by contradiction that p” < y*. Let (q;)icr, (q;)ier and q” = max; q; be the proba-
bilities that achieve y* > p’. Then it has to be that for each i € {1,...,k}

Tt
(1 =g)2 i
qi + qz)ni >p

and foreachi e {k+1,...,n}

qi+q;>p’. (8)

Combining with condition (7), the first set of inequalities imply that for each i € {1,...,k},
q; > p;- This also implies that

Zqi+q,:1_ZQi<1_2pi:p"

i>k+1 i<k i<k

Hence for all i € {k + 1,...,n}, it has to be that

qGi+q;<) qi+q'<p’
i>k+1
which contradicts condition (8).

Finally, the expressions for p” and k come from Equation (7). O

5.2 Hiding items

Let us instead relax the implicit restriction that the platform cannot hide items. In the
first round, the platform may present a partition of a strict subset of items S C I. In each
subsequent round, it may present a partition of a strict subset of the set selected by the
user in the previous round.

When the user has a exogeneous positive outside option that is private information,
Theorem 5 implies that it is never optimal for the platform to hide any items. In the
optimal policy, every item is presented to the user with a strictly positive probability.
Intuitively, because the outside option is positive and unknown to the platform, with-

holding items increases the chance that the user exits; assigning positive probability to

20

every item hedges against this exit risk (under which the platform earns zero payoff).
Assume now that the user has no exogenous positive outside option. In this case,
the optimal algorithm depends on what the user knows about, and how she can access,

hidden items. We begin with a trivial benchmark.

Theorem 6. If the user knows nothing about hidden items (i.e. if the user simply takes the

recommendations at face value), the optimal algorithm is to present only 1 in the first round.

Proof. If the user remains on the platform regardless of the partitions presented, then by

displaying only item 1 the platform guarantees that the user selects item 1. [

This “no-churn” condition is satisfied, for example, when the user (i) has no outside
option, and (ii) either has no information about hidden items (so she assigns them value
0), or has no access to hidden items outside of the platform.

Instead, suppose the user can observe the average value of the hidden items and will
exit the platform whenever this value exceeds the value of every item (or bundle) dis-
played—for instance, because she can obtain the hidden items elsewhere. In this case it is
again optimal for the platform to never hide items. Moreover, conditional on not hiding

any items, any algorithm characterized by Theorem 2 remains optimal.

Theorem 7. If the user can observe the average value of the hidden set and leaves whenever
it exceeds the value of every displayed option, then the platform never hides any item, and the

optimal algorithm coincides with that in Theorem 2.

Proof. We only prove that in an optimal policy the platform does not hide items. Let A be
any active set. Suppose the platform hides a set S C A and presents a partition P of A\ S.
Consider instead the partition P’ := P U{S}, i.e., the platform reveals $ as an additional
block. Fix any value profile v. If there exists S € P with v(S) > v(S), then P and P’ lead
to the user choice and thus same outcome to the platform. If instead v(S) < v($) for all
S € P, then under P the user exits (since the hidden set dominates all displayed options),
yielding payoff 0. Under P’, the user can select $ rather than exit, so the platform obtains
a weakly higher payoff. Hence P’ weakly dominates P for all v, implying that hiding

items is never optimal. N

6 Conclusions

In this paper, we formalized the problem of conversational steering as a sequential par-

tition game between a user maximizing their own utility and a platform with a possibly

21

misaligned objective function. Motivated by the rise of Al assistants that must balance
user satisfaction with safety, fairness, or monetization goals, we sought to understand the
theoretical limits of such guidance.

Our analysis yields three main insights. First, despite the double-exponential space
of possible conversation trees (partitions), the optimal policy takes a surprisingly simple
form: a randomized sequence of recommendations. The platform need not construct com-
plex, coarse partitions of the search space; it is sufficient to sequentially propose specific
items ("Do you want X, or something else?"). This theoretical finding offers a microfoun-
dation for the ubiquity of "recommender systems" as the default mode of interaction in
digital marketplaces.

Second, we characterized the limits of this steering. We proved that no determinis-
tic policy can guarantee a non-zero competitive ratio against an adversarial user profile.
However, by randomizing the order of recommendations, the platform can achieve a com-
petitive ratio of —1-. This bound is tight and robust: it holds regardless of the user’s
private valuations. This result highlights a fundamental trade-off: to protect against
worst-case alignment failures (where the user’s best item is the platform’s worst), the
platform must concede a significant portion of potential surplus, specifically by random-
izing among its own high-value items.

Finally, we extended our framework to sequentially optimal policies and settings with
user outside options. We showed that the presence of an outside option forces the plat-
form to diversify its "list" of recommendations, effectively curbing aggressive steering to
prevent user churn.

As Al assistants evolve from passive search engines to active decision partners, un-
derstanding the economics of their guidance becomes paramount. Our work provides a
baseline tractability result: effective steering does not require complex manipulation of
the user’s information set, but rather a carefully calibrated, randomized offering of spe-
cific choices. Future work might explore this dynamic under partial information, where
the platform learns the user’s preferences over time, bridging the gap between our prior-

free benchmark and classical Bayesian learning.

References

Martino Banchio and Suraj Malladi. 2024. Search and Rediscovery. In Proceedings of
the 25th ACM Conference on Economics and Computation (New Haven, CT, USA) (EC

22

’24). Association for Computing Machinery, New York, NY, USA, 1194. doi:10.1145/
3670865.3673452

Martino Banchio, Aranyak Mehta, and Andres Perlroth. 2025. Ads in Conversations. In
Proceedings of the 26th ACM Conference on Economics and Computation. 350-350.

Dirk Bergemann, Marek Bojko, Paul Diitting, Renato Paes Leme, Haifeng Xu, and Song
Zuo. 2024. Data-driven mechanism design: Jointly eliciting preferences and informa-
tion. arXiv preprint arXiv:2412.16132 (2024).

Kshipra Bhawalkar, Alexandros Psomas, and Di Wang. 2025. Sponsored Questions and
How to Auction Them. arXiv preprint arXiv:2512.03975 (2025).

Avinava Dubey, Zhe Feng, Rahul Kidambi, Aranyak Mehta, and Di Wang. 2024. Auctions
with 1lm summaries. In Proceedings of the 30th ACM SIGKDD Conference on Knowledge
Discovery and Data Mining. 713-722.

Paul Duetting, Vahab Mirrokni, Renato Paes Leme, Haifeng Xu, and Song Zuo. 2024.
Mechanism design for large language models. In Proceedings of the ACM Web Conference
2024.144-155.

Paul Dutting, Michal Feldman, Inbal Talgam-Cohen, et al. 2024. Algorithmic contract
theory: A survey. Foundations and Trends® in Theoretical Computer Science 16, 3-4
(2024), 211-412.

Bengt Holmstrom. 1980. On The Theory of Delegation. Technical Report. Northwestern

University, Center for Mathematical Studies in Economics and

Eaman Jahani, Benjamin S Manning, Joe Zhang, Hong-Yi TuYe, Mohammed Alsobay,
Christos Nicolaides, Siddharth Suri, and David Holtz. 2024. Prompt Adaptation as
a Dynamic Complement in Generative Al Systems. arXiv preprint arXiv:2407.14333
(2024).

Dietmar Jannach, Ahtsham Manzoor, Wanling Cai, and Li Chen. 2021. A survey on con-

versational recommender systems. ACM Computing Surveys (CSUR) 54, 5 (2021), 1-36.

Jon Kleinberg and Robert Kleinberg. 2018. Delegated Search Approximates Efficient
Search. In Proceedings of the 2018 ACM Conference on Economics and Computation
(Ithaca, NY, USA) (EC ’18). Association for Computing Machinery, New York, NY, USA,
287-302. doi:10.1145/3219166.3219205

23

https://doi.org/10.1145/3670865.3673452
https://doi.org/10.1145/3670865.3673452
https://doi.org/10.1145/3219166.3219205

Sijie Lin. 2025. Learning to prompt: Human adaptation in production with generative ai.
Available at SSRN 5788402 (2025).

Suraj Malladi. 2022. Searching in the dark and learning where to look. Available at SSRN
4084113 (2022).

Filip Radlinski and Nick Craswell. 2017. A Theoretical Framework for Conversational
Search. In Proceedings of the 2017 Conference on Conference Human Information Interac-
tion and Retrieval (Oslo, Norway) (CHIIR "17). Association for Computing Machinery,
New York, NY, USA, 117-126. doi:10.1145/3020165.3020183

Ermis Soumalias, Michael] Curry, and Sven Seuken. 2024. Truthful aggregation of llms
with an application to online advertising. arXiv preprint arXiv:2405.05905 (2024).

Tobias Werner, Ivan Soraperra, Emilio Calvano, David C Parkes, and Iyad Rahwan. 2024.
Experimental evidence that conversational artificial intelligence can steer consumer

behavior without detection. arXiv preprint arXiv:2409.12143 (2024).

24

https://doi.org/10.1145/3020165.3020183

	Introduction
	Related Work

	Model
	The Conversation Protocol
	Algorithms and Payoffs
	The Omniscient Benchmark
	Objective

	The Limits of Deterministic Steering
	Optimal Randomized Steering
	Performance Guarantee
	Sequential Optimality

	Extension
	Outside Option
	Hiding items

	Conclusions

