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Abstract

We develop a tractable model for studying strategic interactions between learn-

ing algorithms. We uncover a mechanism responsible for the emergence of algorith-

mic collusion. We observe that algorithms periodically coordinate on actions that are

more profitable than static Nash equilibria. This novel collusive channel relies on an

endogenous statistical linkage in the algorithms’ estimates which we call spontaneous

coupling. The model’s parameters predict whether the statistical linkage will appear,

and what market structures facilitate algorithmic collusion. We show that sponta-

neous coupling can sustain collusion in prices and market shares, complementing

experimental findings in the literature. Finally, we apply our results to design algo-

rithmic markets.
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1 Introduction

Artificial Intelligence (AI) software is becoming more common in a variety of business

contexts, ranging from bidding in online auctions to pricing on shopping platforms and

setting short- and long-term rents. This market shift has been accompanied by concerns

that automated pricing and bidding software could facilitate collusive behavior, voiced

both by regulatory authorities (OECD (2017), Competition Bureau (2018), Competition

& Markets Authority (2021)) and by academic researchers (Harrington (2018), Calvano

et al. (2020), Asker, Fershtman, and Pakes (2022)).

In this paper, we identify a novel collusive channel that can facilitate collusion be-

tween AI algorithms. Posing in sharp contrast with explicit cartels or tacitly-collusive

equilibria, this channel does not require deliberate intent to collude from market par-

ticipants. Instead, collusive outcomes arise as a result of an endogenous statistical link-

age between independent, myopic, profit-maximizing learning algorithms. To highlight

these characteristics, we call this collusive channel spontaneous coupling. We show that

spontaneous coupling hinges on the algorithmic nature of market participants, instead of

relying on their monitoring technology or their intent to collude.

A major challenge in analyzing these games is that the evolution of play is stochastic

and discrete. AI algorithms learn by running randomized experiment, and thus they gen-

erate stochastic non-stationary paths of play. To handle these challenges, we first show

how to approximate these systems in continuous time. Our model encompasses several

algorithms from the machine learning literature, and traditional dynamical systems tech-

niques allow us to characterize the algorithms’ outcomes analytically.

We first illustrate our machinery in the most canonical game, a Prisoner’s Dilemma.

Despite the strategic simplicity of the game, AI algorithms such as naive Q-learning (not

designed to learn dynamic reward strategies such as tit-for-tat) may enter stochastic cy-

cles sustaining high cooperation rates. We isolate the mechanism responsible for such

cooperation. The algorithms estimate payoffs from each action by running experiments,

and exploit their estimates to collect larger rewards. When experiments are infrequent,

the estimates tend to persist for long periods of play, introducing some estimation er-

ror. These errors are correlated, and they tend to synchronize the algorithms’ path of

play: agents act symmetrically, often jointly cooperating and defecting in stochastic cy-

cles. This phenomenon disappears when the design of the algorithm incorporates careful

exploration or counterfactual modeling, and we characterize a class of algorithms that are

immune to spontaneous coupling: these algorithms learn to play undominated strategies.

Our results apply to a variety of economic settings, where algorithms may collude
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spontaneously. Our first application is to price-fixing, one of the most prosecuted col-

lusive practices (e.g., the Lysine cartel1 prosecuted in 1996 and popularized in the me-

dia, or the price-fixing conspiracy2 in the Dynamic Random Access Memory (DRAM)

market of the early 2000). In the setting of Asker, Fershtman, and Pakes (2022), which

studies price-setting algorithms in a Bertrand competition model, computational exper-

iments show outcomes consistent with price fixing. Algorithms learn to charge supra-

competitive symmetric prices, settling on dominated strategies. We prove that sponta-

neous coupling sustains such price-fixing, without relying on reward-and-punishment

schemes, and highlighting the shortcoming in current competition policy noted in Har-

rington (2018). Our second application studies another common market manipulation

technique known as market division, or “market splitting”. Market division may appear

in various forms: geographical divisions of market shares (as often happens in open-air

drug markets), no-poach agreements, or no-show agreements in auction markets. In a

model of online keyword auctions, we show that spontaneous coupling can sustain algo-

rithmic market splitting. The algorithms learn to “split the market” by coordinating on

the subset of keywords won by each advertiser. Motivated by online auctions, in our last

application we take the perspective of a market designer. We show that it is possible to

design strategy-proof mechanisms that are robust to the participation of algorithmic play-

ers. To do this, we prove that the statistical linkage we identify disappears if the designer

provides enough feedback to the algorithms to assist their learning, and we characterize

the policies which communicate minimally necessary feedback.

1.1 Intuition

Before introducing the formal model, we provide a brief roadmap to the results of the

paper, and we include an intuitive description of spontaneous coupling.

In Section 2 we introduce a model of algorithmic learning, which we call reinforcer.

Algorithms in this class maintain a vector of values representing each action’s payoff con-

sequences and estimate such vectors by repeatedly interacting with the environment and

updating the entries based on the observed payoff.3 A policy function maps the estimated

payoff vector to the agent’s action. The policy is responsible for trading off exploration

(running experiments, to estimate payoffs accurately) and exploitation (selecting what is

thought to be the optimal action, in order to collect rewards). For example, an ε-greedy

1https://www.justice.gov/atr/case-document/information-33
2https://www.justice.gov/archive/atr/public/press_releases/2005/212002.htm
3For example, this class includes the celebrated Q-learning procedure, itself the building block of many

AI algorithms, as well as some variants of the Multiplicative Weights Update.
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policy selects the action that currently has the highest estimated payoff with probability

1-ε, and with probability ε explores the action space uniformly at random.

To fix ideas, consider ε-greedy Q-learning algorithms that play a Prisoner’s Dilemma.

Section 2 provides the mathematical toolkit that allows us to represent the repeated learn-

ing game as a dynamical system. In Section 3 instead we pin down the statistical linkage

between independent algorithms that undermines the dominant strategy incentives and

sustains cooperation. In practice, algorithms play symmetric profiles of actions “too of-

ten”. Although algorithms experiment independently, their estimates are correlated be-

cause their payoffs depend on the entire action profile, which limits their ability to eval-

uate profitable deviations. We dub this phenomenon “spontaneous” coupling to stress

that even algorithms that explore independently may get linked through correlated play.

We show that coupling leads to the continuous counterpart of stochastic cycles, in which

the agents cooperate most but not all of the time.4

Intuitively, during a period of collusion, each agent estimates the value of colluding

conditional on the opponent colluding as well. This increases the estimated payoff of col-

lusion. At the same time, since experimenting with the competitive action is profitable

in the short run, exploration leads the agents to estimate a high payoff for competition.

However, as soon as one agent begins exploiting the competitive action, the opponents

will quickly best-respond by competing too, and joint competition will yield reduced

payoffs. In particular, the estimated value of the competitive action decreases: the agents

estimate the value of competing conditional on the opponent competing as well. Instead,

because the agent explores seldom, the estimate of collusion’s payoff remains close to the

value of collusion conditional on the opponent colluding as well. This draws the algorithms

away from competition and back into a cycle of collusive behavior. This is how spon-

taneous coupling sustains dominated outcomes: simultaneous deviations reinforce the

estimation error in the algorithms’ estimates.

Why do algorithms fall into this trap? In Section 4 we show that this process depends

on a set of parameters, the relative learning rates of an algorithm, i.e. the speed at which

each action’s estimate gets updated over time. The slower an algorithm learns about

infrequently played actions, the more persistent their estimates become. This persistence,

combined with nearly simultaneous deviations, leads to sustained periods of correlated

play and ultimately, collusion. On the other hand, we show that algorithms with uniform

learning rates, where each action’s estimate is updated at the same speed, do not fall

4This explains why we observe that, while such algorithms often learn to collude in simulations, collu-
sion is imperfect. It is because the agents cannot converge to a constant profile of actions that is not a pure
Nash Equilibrium — these AIs always learn how to best respond to a fixed profile of actions.
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into these collusive practices. Uniform learning rates guarantee that every action enjoys

the same persistence, so that algorithms with this property avoid the stochastic cycles

and learn to play only undominated strategies. We conclude with three applications,

highlighting the effects of spontaneous coupling on automated markets.

1.2 Literature Review

The literature on algorithmic collusion is growing through both experimental work (see,

e.g., Klein (2021), Abada and Lambin (2023), Johnson, Rhodes, and Wildenbeest (2023))

and empirical work (see, e.g., Musolff (2021), Assad et al. (2023)). The seminal results

of Calvano et al. (2020) focus on strategies as a proxy for collusion: the paper argues

that simply looking at outcomes of learning might be insufficient, as collusion might

arise as a “mistake” by poorly designed algorithms. By modeling the dynamics of learn-

ing we obtain comparative statics and we are able to determine what collusive schemes

arise in algorithmic markets. We show that “mistakes” are sustained by spontaneous

coupling. Asker, Fershtman, and Pakes (2022) showed that feedback on demand curves

influences the pricing behavior of algorithms in simulated Bertrand oligopoly, and Ban-

chio and Skrzypacz (2022) finds that additional feedback in first-price auctions restores

competition. We complement these studies by generalizing their intuition and by demon-

strating the mechanism that underpins collusion in their cases.

Most theoretical models of algorithmic collusion consider simple adaptive algorithms

in the interest of tractability, e.g. Brown and MacKay (2021), Leisten (2022), and Lamba

and Zhuk (2022). In these papers, algorithms choose prices based on the opponent’s

last quoted price. These are adaptive strategies, but algorithms react only to market

conditions. They do not improve their predictions over time, which is a key feature of

AI algorithms. We focus instead on the learning algorithms developed by the research

community. In another simple model with adaptive algorithms, Harrington (2022) shows

that a monopolistic algorithm provider selling access through a license may design an

algorithm with collusive tendencies to upcharge for the license.

A model that incorporates learning appear in Hansen, Misra, and Pai (2021), which

finds that supra-competitive prices are sustained by coordinated experiments when bid-

ders use the Upper Confidence Bound algorithm. The key difference is that we allow

experiments to happen fully at random. Correlation arises through the estimates, not

necessarily in the timing of experimentation. Possnig (2023) constructs another model

of sophisticated learning, and provides a theoretical analysis of the limiting points of

reinforcement learning algorithms. The author allows algorithms to condition on past
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behavior of their opponents, and characterizes the repeated-game strategies learned by

the algorithms. Instead, we abstract away from repeated-game strategies in order to bet-

ter isolate the statistical linkage we call spontaneous coupling.

Both economists and computer scientists have examined Reinforcement Learning in

games, for example Erev and Roth (1998) or Mertikopoulos and Sandholm (2016), but

with some notable differences with ours. On the one hand, many have analyzed systems

experimentally (Erev, Bereby-Meyer, and Roth (1999), Lerer and Peysakhovich (2017)).

Our approach is complementary: with the aid of our framework, one can tell apart ex-

perimental findings from agent design considerations. On the other hand, there are some

theoretical results on convergence of learning procedures. For example, learning through

reinforcement has been associated with evolutionary game theory by Börgers and Sarin

(1997). Others have formally analyzed some of the simpler models, as in Hopkins and

Posch (2005). These results focus on the connection with replicator dynamics. Our ap-

proach is different because we consider a general class of learning procedures from the

AI literature. Doing so, we obtain a tool valuable for regulation and design of modern au-

tomated markets. Moreover, the approach described in Section 2 includes earlier results

under a general algorithmic structure. Finally, a collusive scheme similar to the one we

identify is observed in a series of papers (Karandikar et al. (1998), Bendor, Mookherjee,

and Ray (2001a), Bendor, Mookherjee, and Ray (2001b)) on aspiration-based learning. In-

stead of viewing the learning process as a behavioral rule, we study algorithms developed

in the context of machine learning, which turn out to have similar characteristics.

A stream of literature analyzes continuous-time approximation of AI algorithms, mostly

in the single-agent setting. Related to ours is Tuyls, Hoen, and Vanschoenwinkel (2005):

the authors examine a continuous-time approximation of multi-agent Q-learning with

Boltzmann (logit) exploration, and show a link with the Replicator Dynamics from the

Evolutionary Game Theory (EGT) literature. Building on this work, Leonardos and Pil-

iouras (2022) characterizes the tradeoff between exploration and exploitation in the same

setting. Our approximations and results hold in more general settings: we analyze a gen-

eral class of AI algorithms, and our results leverage their discontinuities. Both Gomes and

Kowalczyk (2009) and Wunder, Littman, and Babes (2010) propose a continuous-time

approximation of Q-learning in a multi-agent setting with ε-greedy algorithms: their ap-

proximations are mutually inconsistent. Most importantly, those approximations remain

model-dependent; our method instead applies to general algorithmic forms. The result

is a recipe to analyze equilibria through the lens of dynamical systems, abstaining from

heuristic modeling choices.

The research of Benaim (1996) and Borkar and Meyn (2000) often serve as a foun-
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dation for stochastic approximations in learning: see, e.g., Bhandari, Russo, and Singal

(2021), which uses continuous-time approximations to analyze the finite-time statistical

properties of single-agent Temporal Difference learning. Our approach relies instead on

Kurtz (1970), which provides a more flexible tool to handle general learning procedures

and multi-agent settings. Additionally, we adopt the formalism of differential inclusions

to analyze points of non-differentiability, which are generally overlooked in traditional

stochastic approximations analyses, but that prove to be central in our study.5

2 Model

Our model encompasses several canonical learning algorithms: from Q-learning vari-

ants, such as ε-greedy Q, to Multiplicative Weights Update and EXP3. What all these

algorithms have in common is that they reinforce successful actions and penalize unsuc-

cessul ones while interacting repeatedly. For this reason, we call an algorithm that follows

our learning model a reinforcer.

2.1 Learning Algorithms in Games

Consider a finite normal-form game G = (N, (Ai)i∈N , (r i)i∈N ) with N players. We are inter-

ested in what happens when agents repeatedly play this game and choose actions using a

learning algorithm. Let us focus on one agent, Alice, whose action set Ai has cardinality

di ; Alice delegates decision-making to an algorithm that attempts to maximize her utility.

Her utility function, r i(ai , a−i), depends on her opponents’ actions and her own.

Example 1. Alice employs ε-greedy Q-learning. This algorithm consists of a vector Q(k) for

every period k and a decision rule πε.

• Each entry Qa(k) is an estimate of the long-run value of action a ∈ A. The update for

entry Qa(k + 1) in period k + 1 is given by

Qa(k + 1) =


Qa(k) +α [r(k) +γmaxa′Qa′ (k)−Qa (k)] if a = a(k)

Qa(k) else.
(1)

where r(k) is the payoff, and a(k) is the action the algorithm took, in period k. Parameters

are γ ∈ [0,1), a discount factor, and α ∈ (0,1), called learning rate.

5One exception is the paper by Wunder, Littman, and Babes (2010), which however abandons this route
in favor of simulations.
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• Given the vector Q(k), the algorithm takes actions according to a ε-greedy policy. The

decision rule πε : R|A|→ ∆(A) selects the following probability distribution over actions:

πε (Q(k)) =



1
|argmaxa∈AiQa(k)| ∀a ∈ argmaxa∈AiQa(k) with probability 1− ε
1
di

∀a ∈ Ai with probability ε

Intuitively, the Q-vector estimates the long-run value of actions by iterating over a Bellman

equation. In period k, the value of an action is a convex combination of its previous estimate

(weighted by 1−α) and a new Bellman estimate (weighted by α).6 The weight α controls the

persistence of the estimates, with lower values implying larger persistence of past experiences.

The ε-greedy policy offers a straightforward way to balance exploration and exploita-

tion. Specifically, with probability 1−ε, the algorithm selects the action corresponding to

the highest entry of the Q-vector, which reflects the agent’s belief about the best course of

action at that time. In contrast, with probability ε, the algorithm takes a random action,

enabling the agent to explore the action space. Because of its simplicity and attractive

properties in single-agent environments, it is often used as a benchmark for more com-

plex exploration policies.

Notice that Q-learning is misspecified when it is used as a learning and decision rule

in a game. This is because Alice’s Q-vector estimates a continuation payoff Qai as a func-

tion of Alice’s own actions only, while payoffs depend also on the opponents’ unobserved

actions, a−i . If the opponents’ profile of strategies were fixed, Q-learning would con-

verge on the best response to that profile,7 but in a strategic setting where all agents are

learning, there are no guarantees of convergence.

Q-learning is a representative of a learning model that promotes successful play. We

call this the reinforcer model.

Definition 1. A reinforcer for agent i is a pair (θi , πi) consisting of

• A di-dimensional stochastic process θi that evolves according to

θi(k + 1) = θi(k) +αiD i(ai(k), r i(k),θi(k)),

where ai(k) ∈ Ai is the action taken by agent i in period k, θi ∈ T ⊂R
di , and αi ∈Rdi+

are learning rates for all actions ai ∈ Ai .
6Q-learning is a more general version of the Erev and Roth (1998) and Börgers and Sarin (1997) rein-

forcement learning models. We analyze in this work a different, more straightforward decision rule.
7The proof is a simple adaptation of the arguments in Watkins and Dayan (1992).

8



• A policy πi , that is a map πi : T → ∆(Ai), which selects a distribution of actions for

each value of the process θi ∈ T .

A reinforcer carries a statistic for each available action and selects an action in period

k according to its policy. Both agent i’s and her opponents’ policies introduce randomness

in the process θi . The update function D i depends Alice’s realized actions directly and

on her opponents’ actions through her utility. Given a (possibly random) initial value for

θi(0), which we call the initialization of θi , this stochastic process is well-defined. The

following assumption is maintained throughout the paper:

Assumption A1. The functions D i(ai , r,θ) and πi(θ) are Lipschitz-continuous almost-

everywhere in θ.

Let us return to Example 1. The policy πε is constant on the subspace of Rdi where

argmaxaθ
i
a is fixed and unique. The argmax changes only along the lines of the form{

θi |θia = θia′ = maxθi
}
, which have zero Lebesgue measure. The discontinuities of the up-

date function of Q lie on the same lines, and thus the update is also a.e. Lipschitz. The

ε-greedy Q-learning satisfies Assumption A1.

When multiple agents employ reinforcers, we represent the system as a single vec-

tor of dimension d1 + · · · + dN by stacking the individual algorithms, denoted by θ(k) =

(θ1(k), . . . ,θN (k)). Similarly, D and π indicate the collection of update functions and poli-

cies when missing a superscript.

2.2 Approximation in Continuous Time

We are interested in describing the dynamics of learning of a reinforcer. While relatively

simple to analyze in a stationary, single-decision-maker environment, reinforcers become

unpredictable when learning to play against each other. For example, all convergence

properties of Q-learning rely on stationarity assumptions. Analyzing the learning path

of any number of Q-learning agents requires describing discrete, stochastic updates and

how these interact over time.

We deal with these difficulties using a continuous-time approach known as fluid ap-

proximations. We adopt the formalism first introduced by Kurtz (1970): the idea behind

fluid approximations is to analyze the limit of the systems as the jumps get small and

their frequency increases, which yields a typically more tractable ODE system. We ex-

pect to accurately model most online marketplaces, where decisions are taken at very

high frequencies and the impact of individual decisions is usually small.
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The first step of the approximation is re-casting a reinforcer θ as a process in con-

tinuous time, a procedure called Poissonization. Formally, we consider a Poisson clock

with rate λ1 = 1 and define θ1(t) as the pure-jump continuous-time process such that

θ1(0) = θ(0) and that is constant for all t except at the ticks τ of the Poisson clock, when

it gets updated according to D. Intuitively, one can think of a sequence of stage games

that are played only at the tick of the clock. We introduced a new layer of randomness,

but the path traced by θ1(t) remains identical to the path of the discrete θ(t).

We generate a sequence of processes (θn)n∈N by increasing the rate of the Poisson

clock to λn = n. The goal is to regularize the learning dynamics; therefore, we need to

compensate for frequent updates by reducing the contribution of each jump to the total

estimate. We do this by dividing each jump by 1
n : in the parlance of Definition 1, at a

given arrival time τ of the Poisson process,

θn(τ) = θn(τ−) +
α
n
D
(
a(τ), rτ ,θ

n(τ−)
)
.

Each process θn has the same infinitesimal generator: the sequence (θn)n∈N preserves the

instantaneous rate of change uniformly. We can prove the following result:

Theorem 1. Let H ⊂ T be such that D and π are Lipschitz over H , and let y0 ∈ H be the

initialization point of θ. Then, the sequence of continuous-time stochastic processes (θn)n∈N
converges in probability to the solution of the following Cauchy problem:



dΘi(t)
dt = αEπi ,π−i

[
D i

(
ai , r(ai , a−i),Θi(t)

)]

Θi(0) = yi0

for all i. That is, limn→∞ P
{

supt≤T
∥∥∥∥θn(t)−Θ(t)

∥∥∥∥ > η
}

= 0 for all T ≥ 0 and η > 0 such that

{Θ(t)}t≤T ⊂H .

We provide a formal construction of the sequence θn and a proof of this result in Ap-

pendix A. The process Θ is the fluid approximation to θ: it is a deterministic dynamical

system whose time-derivative is the expected update that the discrete process θ would

incur over one unit of time. Theorem 1 guarantees that the sequence of pure-jump pro-

cesses (θn)n∈N draws closer and closer (in probability) to the continuous process Θ. The

theorem relies on a law-of-large-numbers argument: when updates occur at high fre-

quency and each update is small, the process behaves similarly to its expectation. We

leverage the fundamental theorem of fluid approximations by Kurtz (1970), a stochastic-

processes version of the law of large numbers, to conclude convergence in probability.
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2.3 Reinforcers in Continuous Time

Instead of analyzing the discrete reinforcers, we focus on their fluid limits. We now

introduce a number of concepts from the literature on dynamical systems that we use

throughout the paper to formalize our statements.

Definition 2. Given a dynamical system dθ
dt , the flow of θ starting in x is the map

θ(−,x) : [0,+∞) → T

t 7→ θ(t,x)

that satisfies Equation (2) with initial condition θ(0,x) = x. A trajectory of the dynamical

system is the graph of the flow,
{
(t,θ(t,x)) : t ∈ [0,+∞)

}
. The set Γx =

{
θ(t,x) : t ∈ [0,+∞)

}
is

the orbit of θ starting from x. If a sequence (tn)n∈N is such that


lim
n→∞tn = +∞
lim
n→∞θ(tn,x) = y

we say that y belongs to the forward limit set for the orbit Γx. A steady state of the dynamical

system is a fixed point of its law of motion, i.e. dθdt (t) = 0.

Definition 1 specifies that the actions taken by a reinforcer depend directly on its

current estimates. Thus, analyzing the dynamical system of θi is a good proxy for the

path of play. Moreover, studying the forward limit set of a reinforcer allows us to focus

on estimated values instead of realized actions. Since many policies, such as ε-greedy,

prescribe randomly exploring at small rates arbitrarily ahead in the future, even if the

reinforcer settles its estimates and identifies the action with the largest expected reward,

it will keep playing sub-optimal actions (albeit with a small probability). Thus, focusing

on the path of estimates instead of the path of play provides a natural way to define

stationarity in the case of learning: a reinforcer becomes stationary if its estimates reach

a steady state. We adopt this view for simplicity and clarity of exposition.

Definition 3. We say a reinforcer (θi ,πi) initialized at x converges if θi(t)’s flow started

at x converges on a steady-state θ
i
. We say the agent converges on action ass if the steady-

state θ
i

is such that ass ∈ argmaxa∈Ai θ
i
a. If the argmax is not unique, we say θ

i
is a

pseudo-steady-state.

Requiring that a steady state always exist can be stringent, which motivates the fol-

lowing definition of learning for this paper: agents learn action al if the estimate of that

action is always the largest in the limit.
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Definition 4. We say the reinforcer learns action al if there exists a T > 0 such that al ∈
argmaxa∈Aθia(t) for all t ≥ T . Equivalently, for all θ

i
in the forward limit set of a given

orbit, θ
i
al = maxa∈Aθ

i
a(t).

It follows that if the forward limit set of θ is a singleton, an agent who learns action

al also converges on action al . Finally, notice that an agent can learn action al even if

she doesn’t play said action in each period (for example because an agent explores with

positive probability in the limit).

The definition of reinforcers is rather permissive, allowing for many procedures well

known in the AI literature. For the sake of tractability, in the rest of the paper we will

focus on what we call separable reinforcers.

Definition 5. A reinforcer (θi ,πi) is said to be separable if the fluid approximation of θi

is of the form

dθia(t)
dt

= αia
(
θi(t)

)[
U

(
θia(t),Eπ−i [r

i(a,π−i)]
)

+V
(
θi(t)

)]
. (2)

where αia(θ
i) : T → [0,1]. Moreover we require that α, U , and V be a.e. Lipschitz in all

components, U be Lipschitz everywhere and increasing in E[r(a,π−i)] and decreasing in

θia, and ∂V
∂θai

< − ∂U
∂θai

almost everywhere.

Two parts make up a separable reinforcer: a component that is equal for all actions,

V (θi), and a component that is action specific but Lipschitz over the entire domain T ,

U (θia,E[r i]). The function U , uniform across all actions, operates on a given action’s

estimates. The first of the monotonicity assumptions amounts to requesting that a re-

inforcer’s updates increase with good news. The second states that a reinforcer likes

surprises: the update shrinks if the agent already holds an action in high regard.

Example 1 (continued). ε-greedy Q-learning is a separable reinforcer. For Q-learning,

U (Qia(t),E[r i]) = Eπ−i [r
i(ai , a−i)]−Qia(t)

V (Qi) = γmax
a
Qia(t)

αia(Q
i(t)) = αi · (πε(Qi(t)))a

Thus, U is linear in its arguments and Lipschitz everywhere, increasing in rewards and de-

creasing in Qia(t). The common component V is constant over its Lipschitz domains and since

γ < 1 its derivative is dominated by U ’s. Finally, the learning rate αia(Q
i(t)) is the product of

the common rate αi and the probability of selecting action a given Qi(t).
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The restriction to separable reinforcers does not rule out standard algorithms. Sep-

arability mainly requires that an algorithm "treats each action the same": the only term

that can differ across actions is the learning rate αia. All entries of the vector θi adopt

the same action-specific component, and any interaction term appears uniformly in all

actions’ updates.

3 Q-learning in the Prisoner’s Dilemma

This section analyzes how Q-learning algorithms behave in a family of Prisoner’s Dilem-

mas to build intuition towards more general statements. Simulations show that Q-learners

can coordinate to cooperate over a wide range of settings, but their coordination is not

perfect and they randomly switch between cooperation and defection. Analyzing the

fluid approximation allows us to pin down the key mechanism behind cooperation.

Model. We consider a family of Prisoner’s Dilemma games, as illustrated in Figure I.

Alice and Bob both start with an equal endowment of two US dollars and they simulta-

neously decide whether to invest their funds in a shared pool that grows in value by a

factor denoted as g, where g falls between 1 and 2. The accumulated wealth in the pool

is then divided equally between Alice and Bob, and those who didn’t invest get to keep

their endowments as well. This game is a canonical model of the free-rider problem,

Alice

Bob

C D

C 2g,2g g,2 + g

D 2 + g,g 2,2

Figure I: Payoffs of the stage game, 1 < g < 2.

equivalent to a Prisoner’s Dilemma. The parameter g models the attractiveness of joint

cooperation: the larger g, the more attractive cooperation (action C) becomes. However,

for all g ∈ (1,2), the dominant strategy, and the only Nash equilibrium, is to play “defect"

(action D) and keep one’s change.

Simulations. We simulate the path of play of Alice and Bob when they adopt ε-greedy

Q-learning in this free-rider problem 100 times for various values of g. Figure IIa shows

13



the results of these numerical experiments. The algorithmic agents learn to play the dom-

inant strategy equilibrium {D,D} only for low values of the parameter g. Instead, when g
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(a) Each bar represents the fraction of the 1000
simulations for a given g where the agents learn
the Nash Equilibrium {D,D} (agents play the
pair (D,D) in over 50% of iterations).
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(b) Each bar represents the ratio of periods
k ∈ [80,001,100,000] where cooperation is a
player’s preferred action (QC(k) ≥ QD(k)) over
the total number of periods in the same interval
(20,000), for a sample experiment with value g.

Figure II: For these simulations, we chose parameters ε = 0.1, α = 0.05 and γ = 0.9. In
each simulation, we initialize both algorithms optimistically, i.e. with values larger than
the maximum available continuation value, 2g

1−γ .

is large, the agents cooperate, albeit imperfectly. Both cooperation and defection appear

in unpredictable but recurrent cycles, as shown in Figures IIIa and IIIb: the value of col-

laboration is generally above that of defection, but after some time it drops below QD(k),

so that agents switch to playing D. The value of defection then decreases almost immedi-

ately, and players revert to cooperation. These simulations highlight a few puzzles. First,

cooperation arises only for large values of g, even though defection is always a dominant

strategy. Second, cooperation seems to consist of cycles, but one cannot impute these to

“retaliatory" strategies, since Q-learning does not carry memory of past play. Figure IIb

shows that in the long run Alice and Bob play cooperation for a large fraction of the time.

3.1 Theoretical Results

We begin the theoretical analysis by explicitly deriving the continuous-time approxima-

tion of ε-greedy Q-learning. In every iteration, Alice and Bob play the action correspond-
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(a) Evolution of Alice’s Q-values.
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(b) Evolution of Bob’s Q-values.

Figure III: The two graphs depict the last 500 iterations of a sample simulation with
g = 1.8. Other parameters are the same as in Figure II.

ing to their largest payoff estimate (with high probability). Both learn something about

the value of their action and then update their payoff estimate. In the parlance of Defini-

tion 1, both Alice and Bob evolve according to a function D i that is discontinuous along

the surface QiD(k) = QiC(k). To sidestep this discontinuity in the right-hand side of the

discrete-time system, we first apply Theorem 1 to Q(k) over the largest open sets such

that D = (DA,DB) is everywhere Lipschitz. We call these sets maximal continuity domains:

in the case of ε-greedy Q-learning these are sets ωa,b of vectors Q such that Alice’s greedy

action is a and Bob’s greedy action is b; let ωa,b be their closure.

Over ωC,C the greedy action for both players is C, so that in every period Alice co-

operates with probability8 1− ε
2 and defects with probability ε

2 . Hence, with probability

(1− ε2 )2 she collects reward 2g — similarly for other profiles. Therefore, the fluid limit in

ωC,C solves 

dQA
C(t)
dt

= α
(
1− ε

2

)[(
1− ε

2

)
2g +

ε
2
g + (γ − 1)QA

C(t)
]

dQA
D(t)
dt

= α
ε
2

[(
1− ε

2

)
(2 + g) + 2

ε
2

+γQA
C(t)−QA

D(t)
]

dQB
C(t)
dt

= α
(
1− ε

2

)[(
1− ε

2

)
2g +

ε
2
g + (γ − 1)QB

C(t)
]

dQB
D(t)
dt

= α
ε
2

[(
1− ε

2

)
(2 + g) + 2

ε
2

+γQB
C(t)−QB

D(t)
]

(3)

where we denote in bold the fluid approximation of the algorithms of Alice and Bob.

Similar linear systems appear in all continuity domains. We can write the dynamical

8That is, C is selected with probability 1 − ε if the randomization device instructed the agent to be
greedy and with probability ε

2 if the agent plays a random action.
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system in matrix form as

Q̇(t) =



AC,CQ(t) + bC,C for Q(t) ∈ωC,C
AC,DQ(t) + bC,D for Q(t) ∈ωC,D
AD,CQ(t) + bD,C for Q(t) ∈ωD,C
AD,DQ(t) + bD,D for Q(t) ∈ωD,D

(4)

Dynamical systems with discontinous right-hand sides can be analyzed using the tools of

differential inclusions: Filippov (1988) guarantees that there exists a forward solution to

Equation (4).

The dynamics of this 4-dimensional piecewise-linear system are complex: the system

exhibits chaotic behavior over various parametrizations and initial conditions (see Ap-

pendix B for more details on chaos theory and its analysis in the Prisoner’s Dilemma).

To make progress in the analysis, we begin by restricting attention to the subspace {Q ∈
R

4|QAa = QBa for a = C,D} � R
2, where the system is bound to remain if the initial condi-

tion is symmetric. We will then make the following assumption for the rest of Section 3:

Assumption S. Let QA
a (0) = QB

a (0) for a = C,D.

Under Assumption S, we prove the following proposition, which characterizes the

limiting behavior of the continuous-time approximation.

Proposition 1. Let ε(g) = 1 −
√

2−g
g . The forward limit set of Q is a singleton for any initial

condition. If ε ≥ ε(g), all initial conditions lead to the unique steady state

q
eq
D =

(
2ε+ 2g − εg

2
+
γ (4 + εg)
2(1−γ)

,
4 + εg

2(1−γ)

)

which lies in ωD,D .

If ε < ε(g), initial conditions may lie in one of two regions of attractions, RD and RC . All

initial conditions in RD lead to the steady state qeqD . All initial conditions in RC instead lead to

the pseudo-steady state (see Definition 3)

q
eq
C = (y,y) where y =

1 + g +
√

(g − 1)(g − 1− εg + ε2g
2 )

(1−γ)
,

which lies in ωD,D ∩ωC,C .

In the symmetric subspace, the limiting behavior of the system can be twofold. When

ε is larger than the critical level ε(g), the algorithms converge on a steady state qeqD where
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both players find defection to be the preferred action. However, when ε is below the

critical level, there exists additional steady state on the boundary that separates the two

regions ωD,D and ωC,C — a pseudo-steady-state according to Definition 3, where Alice’s

and Bob’s estimates of cooperation and defection coincide. In this case the Q estimates lie

between the long-run value of mutual defection, r(D,D)
1−γ , and the long-run value of mutual

cooperation, r(C,C)
1−γ . Alice and Bob are indifferent between cooperation and defection at

q
eq
C , and they play cooperation (defection) for a fraction τ (1− τ) of the time.

Corollary 1. In the pseudo-steady-state qeqC agents spend τc fraction of their time cooperating,

where

τ =
ε2g
2 + ε − 2− qeqC (γ − 1)(1− ε)

2(ε − 1)(1 + g + (γ − 1)qeqC )
∈
[1
2
,1

]
.

The pseudo-steady-state qeqC corresponds to the imperfect cooperation we observed in

the experiments. In particular, the analytic expression for the time spent cooperating ap-

proximates its discrete-time experimental counterpart closely, as shown in Figure VIIb.9

3.2 Sketch of the Proofs

With Assumption S, learning evolves according to this piecewise-linear dynamical sys-

tem:

Q̇(t) =


AC,CQ(t) + bC,C for Q(t) ∈ωC,C
AD,DQ(t) + bD,D for Q(t) ∈ωD,D

The flows within each ωa,a characterize the evolution of the Q-functions. However,

the system is discontinuous: we would like to preserve continuity of any given flow along

the boundary ωC,C ∩ωD,D . Proposition 2 below guarantees that we can suitably extend

the flows on the boundary, similarly to continuous pasting techniques, such that the flow

defined by the fluid limit is globally defined forward in time.

Proposition 2. Let Fa be the field defined as above over ωa,a for all a ∈ {C,D}. There exists a

global solution in the sense of Filippov (1988) to the differential inclusion

dQt

dt
= Fa(Qt) over ωa,a for a = C,D

dQt

dt
∈ co

{
Fa(Qt)

∣∣∣ ∀a = C,D
}

when Qt ∈ωC,C ∩ωD,D

where co{·} denotes the convex hull of a set, and ω is the closure of ω.
9In Appendix B we observe that the general asymmetric 4-D system gravitates around a similar equi-

librium, where QC =QD . We interpret it as additional support for the restriction to a symmetric subspace.
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Both vector fields FC and FD are well-defined also on the boundary between ωC,C and

ωD,D . This boundary is called a switching surface, because the laws of motion must switch

from one field to the other. Adopting the convention of Filippov, we can define a vector

field on the switching surface such that all flows extend to a global solution and such that

certain continuous-pasting conditions are satisfied.10

Let us call N̂ the unit normal vector to the switching surface ωC,C∩ωD,D , so that N̂ ·Fa
is the component of Fa orthogonal to the surface. We divide the switching surface in

three regions, according to the signs of the normal components of the two vector fields

FC and FD . A crossing region occurs when both normal fields to the boundary are of the

same sign: either FC or FD can be used to define the law of motion on the surface, since

any orbit leaves the switching boundary immediately. A repulsive region occurs where

both normals face away from the boundary, which will then never be reached; unless

initialized here, an orbit will never intersect the repulsive region, thus we do not need to

define a field here. Finally, a sliding region occurs when both normal components of the

two vector fields point towards the boundary. Every flow hitting the switching surface in

the sliding region must continue on the switching surface, sliding along the boundary. The

sliding vector field is defined as a convex combination of the two vector fields FC and FD
with parameter τ such that the normal component to the switching surface vanishes, i.e.

τ(N̂ · FC) + (1 − τ)(N̂ · FD) = ~0. The vector field τFC + (1 − τ)FD is the unique vector field

in the convex hull of FC and FD whose flow is confined to the switching surface and that

satisfies the differential inclusion requirements. Figure IV plots the vector fields around

the boundary and shows examples of sliding and crossing boundaries with a sample orbit.

One can then look for stationary points by finding the solutions to FC = 0, FD = 0, and

τFC + (1 − τ)FD = 0. We show that FC = 0 never has a solution in ωC,C , FD = 0 always

have a unique one in ωD,D , and that τFC + (1−τ)FD = 0 has a solution only when ε ≥ ε(g).

In Figure V we plot the vector fields that define Q for two different values of g: notice

two stationary points when g is large — the pseudo-steady-state on the boundary disap-

pears for low values of g. The analytical characterization of the two points mentioned in

Proposition 1 follows the derivation in Appendix A.

10Uniqueness in general is not guaranteed: behavior on the switching surface can lead to multiplicities
in the behavior of the system. The law of motion on the switching surface needs only to belong to the convex
hull of the laws of motion on either side; by constraning the motion to satisfy certain continuous-pasting
conditions we obtain well-defined orbits.
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(a) Orbit crossing the boundary. (b) Orbit sliding along the boundary.

Figure IV: Depiction of two discontinuous flows around a switching surface, in the cross-
ing and sliding case.

3.3 Interpretation

According to Proposition 1, the cooperative steady-state, qeqC , exists only when the explo-

ration rate is large enough. Figure VI shows the threshold level of exploration ε that

guarantees a cooperative steady-state and how it varies with the value of cooperation.

Intuitively, as g increases, the relative benefit of defecting decreases (and vanishes for

g = 2), so more and more exploration is needed to realize that D is a dominant action.

For example, if g = 1.8 the exploration rate required to guarantee convergence on {D,D}
is about 70%, which is considerably larger than the standard employed in practice.11

How does Q-learning sustain long-run cooperation, and why does the exploration

rate matter? We answer these questions by analyzing the cooperative steady state, and

its representations in Figure VIIa together with Figures IIIa and IIIb.12 Suppose C is the

preferred action of both players. Alice and Bob cooperate, but with probability ε
2 one

defects and is “surprised” the unilateral benefit of defecting. Through repeated experi-

ments, over time QiD rises above QiC . Suppose this happens first to Alice; as soon as Alice

begins defecting, Bob will defect immediately after — cooperating makes Bob consider-

ably worse off when Alice defects, and his estimate QBC quickly falls below QBD . But now

mutual defection decreases the value of QiD for Alice and Bob. Instead, experiments are

so infrequent that QiC changes very slowly. After a brief phase of joint defection, QiC will

dominate QiD again, restarting the cycle.

11The literature on Q-learning in games usually employs ε = 0.1 or smaller, either fixed or decreasing
over time. See, e.g., Gomes and Kowalczyk (2009).

12Notice that, when simulated with small but discrete time steps, the dynamical system closely mimics
the path of play of the discrete Q-learning.
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(a) Phase space with g = 1.8.

(b) Phase space with g = 1.1.

Figure V: Stationary points are marked with a red dot. The domain of attraction of the
cooperative outcome is green-shaded, and the one for the non-cooperative outcome is
blue-shaded.
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Figure VI: Maximum exploration rate ε to support the cooperative equilibrium, as a func-
tion of the growth rate. For all ε > ε(g) there does not exist a steady-state where both
algorithms learn to cooperate.

Effectively, when the exploration rate is low, the AI agents play a symmetric profile of

actions too often. This is the type of statistical linkage between algorithm’s estimates that

we call spontaneous coupling — the estimates of independent Q-learners tend to evolve

symmetrically. When algorithms start defecting, they experiment with cooperation infre-

quently, which makes the estimate QiC of cooperation’s value persistent. Alice’s estimate

QAC remains close to the long-run value of mutual cooperation. Instead, her estimate QAD
drops dramatically once both agents begin defecting. Alice never realizes the downside

of cooperating when Bob defects because both revert to cooperation simultaneously.

The pseudo-steady-state on the boundary is the continuous-time counterpart of these

cycles in the discrete system. The discrete cycles tend to a single point in the continuous-

time limit. In the pseudo-steady-state, agents are “indifferent” between cooperation and

defection. Both spend some “local time” playing either action: we interpret the weights

τ,1−τ assigned to the fields on the boundary as the fraction of time dedicated to coopera-

tion and defection, respectively.13 The local time is such that the infinitesimal incentives

around the stationary point are balanced.

We argue that spontaneous coupling is a form of collusion. In particular, the out-

comes of a system undergoing such statistical linkage are indistinguishable from a mar-

ket with imperfect monitoring in which participants sustain collusion via punishment-

reward schemes. Differently from classic stick-and-carrot strategies, however, sponta-

13This intuition can formalized using the idea of hysteresis loop around the boundary; see di Bernardo
et al. (2008)
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(a) Cycles of play around the cooperative equi-
librium in the discretized ODE system.
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Figure VII

neous coupling hinges on the algorithmic nature of market participants. A novel incen-

tive that does not rely on monitoring, coupling is, as far as we know, the first collusion

scheme to be formalized that is exclusive to Artificial Intelligence algorithms.

We imposed Assumption S at the beginning of the formal results of this section. While

symmetry is necessary to gain analytical tractability, spontaneous coupling appears even

without this assumption. For example, recall that the discrete simulated system always

exhibits chaotic behavior. Nonetheless, in Figure VIIb the expression τ appears to fit the

data reasonably well. We refer to Appendix B for an analysis of the chaotic system when

initialization is not symmetric. There we argue that under chaotic behavior spontaneous

coupling displays as a bounded chaotic attractor with similar time-average properties.

4 General Reinforcers

The mechanics of spontaneous coupling, identified in Section 3, appear tied to the policy

of the reinforcer. We now show that the driving force of inadvertent coordination lies in

the algorithm’s uneven learning rates across different actions, of which the exploration

rate is just a determinant. Learning at different rates about different actions facilitates

coordination for general reinforcers. We establish a sufficient condition on the parameters

of the algorithm which avoids coupling: learning rates must be uniform across actions.
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4.1 Reinforcers in the Prisoner’s Dilemma

The analysis in the Prisoner’s Dilemma of Section 3 brings out a mechanism which sus-

tains collusive behavior between algorithms. When Alice’s preferred action is coopera-

tion, she learns about the payoffs of cooperating at rate 1− ε2 , while much more slowly, at

rate ε
2 , about defection. Essentially, exploration regulates how quickly Alice learns about

the value of deviations. When algorithms are coupled, low rates of exploration impair

the ability of the algorithm to correctly estimate the value of deviations.

This phenomenon can be formalized without referring to a specific policy. In fact, a

given policy only affects the learning rates αa of different actions. For example, in the case

of ε-greedy Q-learning the differential equation within the maximal continuity domain

ωD,D reads as:



dQA
C

dt
(t) = α

ε
2

α
ε
2

α
ε
2

[(
1− ε

2

)
g +

ε
2

2g + (γ − 1)QA
C(t)

]

dQA
D

dt
(t) =α

(
1− ε

2

)
α
(
1− ε

2

)
α
(
1− ε

2

)[(
1− ε

2

)
2 +

ε
2

(2 + g) +γQA
C(t)−QA

D(t)
]

In the language of separable reinforcers, the decision rule of player i affects only αia(θ
i).

In the fluid approximation the only role of the policy is to determine the relative learning

rates, since in Definition 5 expectation is taken only with respect to distribution over pro-

files generated by the opponents’ policies. Since the absolute magnitude of the learning

rates does not matter, we focus on the relative rates.

Definition 6. The relative learning rate of action ai is the ratio

RLR(ai) =
αai∑
a∈Ai αa

.

Theorem 2 below shows how differences in RLR across actions generally give rise

to spontaneous coupling: the coupling appears in a Prisoner’s Dilemma for any pair

of agents using any (separable) reinforcer. For simplicity, we focus on reinforcers with

maximal continuity domains equal to ωC,C and ωD,D , and constant learning rates αC ,αD .

Theorem 2. Let each agent learn through the same greedy reinforcer in any Prisoner’s Dilemma,

and let Assumption S be satisfied. There exist an open set A ⊂ R
4
+ such that for all parameters

{αj(ωk,k)}j,k=C,D ∈ A there exists a pseudo-steady-state on the boundary ωC,C ∩ωD,D .

The proof is constructive: we show that there exist a symmetric tuple of α’s such that

the sliding vector field on the indifference boundary is null. In particular, we show this
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when the vector fields on either side of the indifference boundary are opposite, i.e. the

local time is 1
2 . We apply homotopical arguments to show that there exists such αs, and

then we perturb the problem and we obtain the result by continuity. Theorem 2 highlights

an outstanding fact: even in dominant-strategy-solvable games, reinforcers will not play

the dominant strategy for various ranges of parameters.

4.2 Reinforcers with Uniform Learning Rates

We provide a simple condition that guarantees reinforcers converge on dominant strate-

gies: reinforcers’ relative learning rates must be uniform across all actions. Intuitively,

even if algorithms are coupled, uniform learning rates allow agents to evaluate deviations

correctly, thus leading them to their dominant strategy.

We first need the following technical assumption:

Assumption A3 (Thickness). Let Gt−i(a) be the distribution over actions of all players but

i at time t. Then, there exists a χ > 0 and a T such that for all t > T , Gt−i(a) ≥ χ for all i

and for all a ∈ A−i .

Thickness ensures that sufficient exploration is carried out by all players in the limit. For

example, any game where all agents adopt a ε-greedy policy satisfies this assumption.

More generally, thickness states that each action profile is played with positive (albeit

small) probability in the limit.

Theorem 3. Suppose Assumption A3 is satisfied for all players.14 In any game with a dom-

inant strategy equilibrium, a reinforcer with RLR(ai) = RLR(ãi) for all ai , ãi ∈ Ai learns the

dominant strategy. If the forward limit set of θ is a singleton, then θ converges on the domi-

nant strategy.

This result is quite general, as we make almost no assumption about the opponent’s

play: as long as all actions are played with some positive probability even in the limit,

the reinforcer will learn to play its dominant strategy. If the game is solvable by strict

domination, we do not even require Assumption A3. Uniform learning rates ensure any

reinforcer will learn the dominant strategy for any number of opponents, as even if they

adopt different learning algorithms, or the same learning algorithm with different param-

eters. The assumption that relative learning rates be uniform across actions may appear

stringent: it might for example require restricting the exploration of the algorithm to

14We require this assumption because we formulate the Theorem for games solvable by weak dominance.
We can instead drop Assumption A3 when the best-response to any of the opponent’s strategies is unique.
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try each action uniformly at random. Instead, we propose a different strategy to achieve

identical RLR across actions.

Consider again Q-learning: the algorithm updates the statistic of action ai when ac-

tion ai is taken and its reward is observed, but it leaves other statistics unattended when

the corresponding action is not selected. Suppose however that the agents were able to

compute counterfactuals. That is, suppose that, after choosing an action ai in period t,

the algorithmic agent was able to back out rt(ãi , a−i) for all ãi , ai . Then, the statistics

of all actions could be updated simultaneously, using the reward that each action would

have procured had it been played in that period. Simultaneous updates are sometimes

referred to as synchronous learning:15 in this case learning happens at the same rate for all

actions. The ability to compute counterfactuals affects the learning rates: the second fac-

tor in αia · (πε(θi(t)))a disappears when agents update synchronously. When asymmetric

learning rates arise from missing or asymmetric experiments, counterfactual information

(i.e., a correct model of the environment) is sufficient to eliminate the asymmetry. The

following corollary formalizes this intuition.

Corollary 2. Under the same assumptions of Theorem 3, a reinforcer who can compute counter-

factuals always learns the dominant strategy. If its forward limit set is a singleton, it converges

to the dominant strategy.

It is natural that counterfactuals help to learn to play equilibria. In fact, the theory

of Nash equilibrium is based on the assumption that agents can compute the payoff that

would have obtained if they had played a different action, treating the opponents’ strate-

gies as fixed. This in turn allows them to evaluate incentives to deviate. Corollary 2 es-

tablishes that reinforcer algorithms successfully rule out dominated strategies, provided

they have access to a method to compute counterfactuals. Reinforcers with counterfactu-

als will learn to play the (unique) equilibrium.

We can extend the intuition that uniform learning rates ensure that players correctly

estimate the value of deviations to more general setting. This is particularly relevant for

pricing games that do not have equilibria in dominant strategies. Let us consider the

procedure of iterated elimination of strictly of dominated strategies (IESDS). However,

we rescrict deletion to strategies strictly dominated by another pure strategy, because

reinforcers do not deal well with mixed strategies.16

15The term synchronous appears in Asker, Fershtman, and Pakes (2022), but the idea of agents learning
from counterfactuals is present already in Tumer and Khani (2009).

16Definition 1 makes clear that it is impossible for reinforcers to learn the value of randomizing across
actions.
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Definition 7. We say that an action ai ∈ Ai is pure-rationalizable if there is an order of

IESDS such that ai survives the IESDS procedure.

In general, for a certain order of deletion of dominated strategies action ai might get

eliminated. However, as long as there is an order such that ai survives the IESDS process,

we consider ai pure-rationalizable. Our next theorem shows that reinforcers with access

to counterfactuals only play pure-rationalizable strategies in the limit.

Theorem 4. Let all players in game G learn through a reinforcer using a ε-greedy policy with

RLR(ai) = RLR(ãi) for all ai , ãi ∈ Ai for all i ∈ N . Assume ε > 0 is small enough so that the

reward’s order is preserved, i.e. if a−i is the preferred profile of actions of agent i’s opponent,

Eπ−i [r(a
i , a−i)] > Eπ−i [r(ã

i , a−i)] when r(ai , a−i) > r(ãi , a−i). Then, all actions learned by the

players are pure-rationalizable in the game G under the same IESDS order.

Theorem 4 implies that ε-greedy reinforcers with uniform learning rates always learn

to play Nash equilibrium strategies in a supermodular game with a unique equilibrium.

More generally, in any pure-dominance-solvable game, reinforcers will learn the pure-

strategy Nash equilibrium.

We can interpret relative learning rates as the relative ability to work out counterfactu-

als for a given action. Because the utility of a given action depends on the opponent’s path

of play, uneven learning rates generate biased estimates. Small relative learning rates fail

to account for asymmetric play, impairing the ability of the algorithm to best-respond.

Uniform learning rates instead guarantee correct counterfactual estimates. With unbi-

ased counterfactuals, abandoning dominated strategies is immediate. In the following

sections we show how our results can be used to understand and design markets where

AI agents operate.

5 Application: Price Fixing

In this section we consider a prototypical example of price competition between learning

algorithms. In particular, we look at the setting studied by Asker, Fershtman, and Pakes

(2022) and show how the results they obtained in simulation experiments can be given

theoretical foundations. The authors simulate algorithmic competition in a Bertrand

oligopoly, and find that the emergence of collusion depends critically on what the au-

thors call “synchronicity” of the algorithm; their conclusion is in fact a consequence of

Theorems 3 and 4, which validates our approach based on fluid approximations.

Consider first a simplified version of price competition. There are two firms, Alice

Inc. and Bob Ltd., that face a common demand for their product. Assume that the market
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demand isD(pA,pB) = 3−min{pA,pB}, and if the two firms charge the same price they split

demand equally. Suppose that each firm has 0 marginal cost, and for simplicity let the

firms choose only between two prices: p ∈ {0.5,2}. Profits equal price times individual

demand. This Bertrand game has only one static Nash equilibrium, the profile {0.5,0.5},
since posting the lower price is dominant. Asker, Fershtman, and Pakes (2022) assumes

that the two firms learn using Q-learning and they consider two variations, both of which

are greedy, i.e., the action taken is always the one with the highest estimated value.

(i) Asynchronous Greedy Q-learning: the algorithm updates only the Q-value of the

action taken in each period;

(ii) Synchronous Greedy Q-learning: the algorithm updates all Q-values in each period,

with the return that it could have obtained had he played the other action instead,

but holding the opponent’s action fixed.

It is clear that the syncronous greedy Q-learning is a reinforcer with uniform relative

learning rates, since the Q-values of both prices are updated at every time step. Applying

Theorem 3, it is then immediate to deduce that in this case the two learning firms should

converge to posting the lower price, as concluded by Asker, Fershtman, and Pakes (2022).

Asynchronous learning can be regarded as the opposite situation: the relative learning

rate of a price is either 0 or 1. In this case we expect spontaneous coupling to occur, and

indeed Asker, Fershtman, and Pakes (2022) finds supra-competitive prices.

For this simple model with two prices we can carry out a detailed analysis similar to

Section 3, which shows that the same mechanism at play there is also driving the out-

comes in this setting. Figure VIII plots the vector fields obtained applying Theorem 1

to this model assuming symmetric initialization. With asynchronous learning there are

two stationary regions. For values of Q2 ≤ Q0.5 = 5
8 the algorithms converge on the com-

petitive outcome; however, for Q0.5 ≤ Q2 = 1 the algorithms collude. These results are

robust to ε−greedy exploration: the spontaneous coupling introduced in Section 3 again

sustains collusion. Because all observations of the returns from the supra-competitive

price are obtained when colluding, Q2 remains consistent with mutual collusion also

during a competitive phase, which brings the system back to collusion. Instead, if both

firms adopt synchronous learning, there is only one stationary point, at Q0.5 = 5
8 ,Q2 = 0,

and it is a global attractor. When the two firms are colluding, all arrows point upward:

the algorithms correctly estimate the value of a one-shot deviation, without internalizing

the effect that defecting from a collusive outcome will have on returns in the future. Once

the firms begin competing it is then impossible to revert back to collusion: the counter-

factual return of a deviation is zero, and since the relative learning rates are equal Q2 is
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bound to remain lower than Q0.5. In other words, the coupling disappears and therefore

the value of joint collusion is short-lived after competition begins.

(a) Asynchronous updating. (b) Synchronous updating.

Figure VIII: On the vertical axis is Q-value of the low price, and on the horizontal axis
the value of the high price. The green-shaded area denotes the domain of attraction of
the competitive outcome, while the blue-shaded area is the domain of attraction of the
collusive outcome. The red dot and red lines are the equilibria of the systems. Obtained
with γ = 0 (reflects the specification of Asker, Fershtman, and Pakes (2022)).

5.1 General Bertrand Competition

The simple model above reduces the Bertrand game to a dominant-strategy game. It is a

convenient simplification for the purposes of inspecting and plotting the dynamical sys-

tems, but the theory developed in Section 4 allows us to deal with more general models.

The following is the specification from Asker, Fershtman, and Pakes (2022).

Alice Inc. and Bob Ltd. have now constant marginal costs cA = cB = 2. They sell ho-

mogeneous goods and compete by setting prices. The set of feasible prices is composed of

100 equally spaced numbers between 0.01 and 10, inclusive. The set of prices is denoted

by P = {p1, . . . ,p100}. Consumers buy from the firm with the lowest price, and demand is
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parametrized as

di(pi ,p−i) =



1 if pi < p−i and pi ≤ 10
1
2 if pi = p−i and pi ≤ 10

0 otherwise

As the authors note, there are two Nash equilibria of this game, one (E1) with pA = pB =

2.0282 and one (E2) with pA = pB = 2.1291. The multiplicity is a consequence of the

discretization of the space in equally spaced prices. Theorem 4 allows us to deal with set-

tings where there is no dominant strategy, and in particular we can deduce that also with

100 prices, if the firms employ synchronous learning, they can only converge to competi-

tive pricing. Moreover, the following proposition also suggests that the parameters of the

algorithms are irrelevant for the convergence result.

Proposition 3. In a Bertrand oligopoly, if Alice Inc. and Bob Ltd. adopt any ε-greedy separable

reinforcers with a small ε > 0 such that the relative speed of learning is the same across all

prices, they will learn to play either p1 = 2.0282 or p2 = 2.1291.

Proof. This proposition follows almost immediately from Theorem 4. The Theorem guar-

antees that two ε-greedy reinforcers will learn a pure-rationalizable strategy. Discretized

homogeneous Bertrand games have only two pure-rationalizable strategies, the two low-

est prices above marginal cost, which are also the game’s Nash Strategies.

6 Application: Market Division

We made the argument in Section 4 that spontaneous coupling is not a collusive behavior

per se, but is instead a mechanism that may underpin a broad set of market manipula-

tions by algorithmic agents. In support of this claim, in this section we show that spon-

taneous coupling can stifle competition by sustaining an anticompetitive conduct known

as market splitting. With this conduct, market participants coordinate to concentrate each

on a subset of the market and decline to participate in others, so that effectively each

competitor is a monopolist in their reference market. We study a model of search adver-

tising, where competing advertisers submit bids for keywords of various values. We find

that advertisers learn not to bid on their competitor’s favorite keyword, thus implicitly

splitting the market. The outcome is supported by the spontaneous coupling trap, which

emerges endogenously from the learning process.

Consider a market where two advertisers, Alice.net and Bob.com, compete for ad slots

on three distinct keywords: a, m, and b; there is one slot available for each keyword. Each
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advertiser I derives a certain value from a click on their ad, denoted by vIj ∼ U [1,2],

where j ∈ {a,m,b} denotes the keyword. All values vIj are re-drawn independently in ev-

ery auction. We assume that the probability of a click varies depending on the keyword.

Specifically, an ad on an advertiser’s “branded” keyword yields a higher click-through

rate (CTR) than an ad on a neutral or their competitor’s branded keyword. We represent

this variation by specifying advertiser-keyword specific click-through rates (CTR), de-

noted by ctrIj for advertiser I in keyword j. We choose ctrAa = 1, ctrAm = 0.6, and ctrAb = 0.2

for Alice.net, and symmetrically for Bob.com.17

The ad slots are allocated via (separate) second-price auctions with a reserve price

of 1: Alice.net and Bob.com may submit their values vIj for all three keywords, and the

highest bidder for the j auction wins the ad slot for the keyword j. The winner pays tIj per

click, where tIj the second highest bid or the reserve price if they were the only bidder.

The expected payoff for the winner is given by their CTR multiplied by the difference

between their bid and their payment, ctrIj × (vIj − tIj ). The loser receives a payoff of 0. If

an advertiser does not submit a bid, they receive a payoff of 0. Notice that bidding on

all three keywords is a dominant strategy in this game. This is because the payoff for

winning a keyword is always positive, while the payoff for losing a keyword is 0, and

there is no budget constraint.

Within the setting described, we let advertisers A and B use a learning algorithm to

determine which keywords to bid on. Specifically, we assume that A and B implement a

Q-learning algorithm that selects a subset of keywords to bid on. Note that the algorithm

does not select a bid: we assume that when agents bid on a given keyword they bid their

value. Thus, the action space for this algorithm is defined as the power set of the set of

available keywords, which results in a total of 23 possible keyword combinations.

To investigate the dynamics of the Q-learning algorithm, we simulate its behavior and

visualize the results in Figures IX and X. In Figure IX, we observe that both algorithms

exhibit convergence towards the dominant strategy in more than 50% of the indepen-

dent, randomly initialized learning trajectories. However, in 18 out of 50 simulations,

the two advertisers learn to collude by splitting the market. Under this collusion scheme,

each advertiser only bids on his own branded keyword and the neutral one. In this col-

lusive scheme, reminiscent of collusion in spatial models, neither advertiser bids on the

opponent’s branded keyword, despite the fact that it is strategically suboptimal. It is im-

portant to notice that the outcome of collusion by market splitting is Pareto dominant:

17Keywords denoted by a and b are "branded" for Alice.net and Bob.com, respectively. Think of a query
that communicates a clear intent to reach Alice.net’s website. The query denoted by m instead is neutral —
it may lead to a click on either advertiser with the same probability.
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Figure IX: The figure displays a frequency histogram of independent, randomly initial-
ized learning trajectories that converge on a given strategy. The upper bar graph rep-
resents the fraction of these trajectories that converge on each strategy, while the lower
graph displays all possible advertisers’ strategies.

both players achieve better outcomes than if they bid on all keywords. In fact, bidding on

all keywords yields an expected payoff of 1
6

(
1 + 6

10 + 2
10

)
= 3

10 per round, whereas market

splitting yields an expected payoff of 1
2 + 1

6
6

10 = 6
10 per round.

Figure X: Learning trajectories from a simulation with γ = 0.9, ε = 0.01, α = 0.005. The
solid line represents Q(m,a) and Q(b,m) on the left and right, respectively. The dotted
lines represent theQ values associated with some bundles containing the opponent’s key-
word.

We now focus on Figure X to examine in greater detail the collusive dynamics. This

figure portrays the evolution of the Q-learning algorithm for a selection of actions taken

by each advertiser. As the figures reveal, the collusion behavior is not perfect. Although

most of the time the two advertisers engage in collusive splitting, experimentation even-
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tually brings about the realization that they could benefit by bidding on the opponent’s

branded keyword. As soon as they realize this, one of the advertisers begins bidding

on the opponent’s branded keyword, causing a sudden drop in the opponent’s payoffs,

which leads her to abandon the splitting strategy and revert to bidding on all keywords.

This sequence of events causes both players to experience significantly lower payoffs, but

their expectations (theirQ) about the market-splitting outcome persistently remain high.

Ultimately, both advertisers return to splitting the market simultaneously in a stochastic

recurrent cycle typical of spontaneous coupling, as described in Section 4.

7 Application: Learning-Robust Mechanism Design

The previous sections demonstrated that reinforcers can fail to learn to play their domi-

nant strategy. Besides being a cornerstone of game theoretic analysis, dominant strategies

are also fundamental in mechanism design; given the widespread adoption of mecha-

nisms in the online economy, the failure of reinforcers is all the more concerning. How-

ever, Theorem 3 and Corollary 2 provide a solution that can be embedded in mechanism

design problems: providing counterfactual feedback may avoid spontaneous coupling’s

occurrence. We are thus interested in designing a dominant strategy mechanism with a

feedback rule that guarantees that if players use reinforcers and update their estimates

according to their feedback, they will learn the dominant strategy. Moreover, we are inter-

ested in finding the minimal feedback necessary to accomplish this goal, because we are

concerned with unintended consequences of providing the algorithms more information

than necessary about the play of the other players.

Consider a canonical model of implementation with private information. Let X be the

set of possible outcomes, and let there be a set N of agents with types (λi)i∈N ∈
�

i∈N Λi =

Λ fixed over time.18 Type λi determines agent i’s preferences ui : X ×Λi → R over out-

comes. A direct revelation mechanism requires each agent to report a type λ̂i . The mech-

anism then maps the reported type profile λ̂ to an outcome, f (λ̂). We say a mechanism is

strategy-proof if it is a direct revelation mechanism and reporting truthufully is a domi-

nant strategy:

ui(f (λi ,λ−i),λi) ≥ ui(f (λ̂i ,λ−i),λi) ∀λ̂i , λi .
Assume further that a subset of agents L ⊆N act according to the choices of their own

18It is simple to extend this result to allow for types drawn i.i.d. in every period, but for simplicity we
stick to a constant type in this section.
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reinforcer. Agents in L, learners, assess the value of each individual report over multiple

iterations of the mechanism. Agents in N \ L are instead rational and myopic. That is,

they rationally play their static dominant strategy instead of trying to manipulate the

learning agents. In each period both rational and learning agents choose a report. Once

the mechanism selects the outcome, payoffs realize and learners update their estimates.

We call this setting a hybrid market, because rational and learning agents coexist.

If the mechanism is strategy-proof, myopic rational agents play their dominant strat-

egy and report truthfully. However, as we have seen in Sections 3 and 4 coupling between

independent algorithms may lead to behavior different from dominant strategy, consis-

tent with collusive agreements, so that simple strategy-proof mechanisms may fail the

designer. We thus seek learning-robust strategy-proof mechanisms (LRSM).

Definition 8. Suppose agents in L adopt a (separable) reinforcer. A strategy-proof mech-

anism is learning-robust if each agent l ∈ L learns the truthful report λltruthful.

We assume that the designer can provide information to the participants of the mech-

anism, and that such information is used by the algorithms to make inference about pay-

offs. Then, our results in Section 4 show that the designer can ensure robustness of a

mechanism by supplying enough information to the reinforcers so that they can evaluate

counterfactuals.19 The designer assists the algorithms in their counterfactual calculations

by revealing some private information. We refer to this ex-post revelation as feedback pro-

vision. For any given a strategy-proof mechanism f , we look for a LRSM for f , that is, an

ex-post feedback policy which allows agents to compute counterfactuals.

A feedback policy for agent i is essentially a partition of the space Λ−i of opponents’

types. After the mechanism, the designer communicates to each agent what element of

the partition the opponents’ reports belonged to. The partitions must be such that agents

can compute what outcomes they could have enforced by reporting differently.

Of course, a designer can always opt for a full revelation feedback policy.20 Revealing

everyone’s report after the mechanim allows algorithms to compute payoffs from every

report, but it may induce additional concerns. First, insisting on revealing all private in-

formation may facilitate tacit or explicit collusion, and, second,it may result in large com-

munication costs. Finally, it is not necessarily true that, when provided with all reports,

computing the allocation is a simple task. In certain combinatorial auctions, translating

reports to prices and allocations requires solving a complex optimization problem.

19Recall from Corollary 2 that updating the estimates θa according to counterfactual information en-
forces uniform learning rates, but this is only a sufficient condition.

20The full revelation policy is the finest partition of Λ−i .
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To address some of these concerns, we look for LRSM with reduced communication

burden. Formally, we define a privacy order on the space of feedback policies. We can

show that this (partial) order is a lattice, and thus there exist both a minimally- and a

maximally-private feedback policy. The former is the full revelation policy, consistent

with our intuition. We characterize the latter: a policy that communicates just enough

information to ensure that each agent can compute its counterfactuals, and nothing more.

It turns out that such feedback is informationally-equivalent to the well-known menu

formulation of the mechanism (Hammond (1979)).

Theorem 5. Let f be a strategy-proof mechanism. Then,

1. There always exists a LRSM for f ,

2. The maximally-private LRSM for f is a menu description.

Menu descriptions are the ex-post feedback counterpart of menu mechanisms. Ham-

mond (1979) defines menu mechanism as providing each agent with a menu, which de-

pends on the profile of reports of the opponents, and let the agent choose his preferred

outcome. Instead, we provide feedback in the form of menus: after having received all

reports and implemented the outcome, the designer sends a menu, also dependent on

the profile of reports of the opponents, that lists what other outcomes would have oc-

curred if the agent had report differently, so that algorithms can compute what would

have happened had they reported a different type.

The feedback of menu descriptions is an aggregator of market information, which

helps agents evaluate the true value of truthful reporting.21 Parkes (2004) argues that

mechanism design can play an important role in shaping algorithmic systems. The au-

thor describes learnable mechanism design — the idea of explicitly designing mechanisms

to maximize and improve performance considering the agent’s adaptive behavior. As he

suggests, “a useful learnable mechanism would provide information, for example via price sig-

nals, to maximize the effectiveness with which individual agents can learn equilibrium strate-

gies”. We formalized this intuition by showing that feedback design can make traditional

strategyproof settings robust to adaptive algorithmic players by providing price signals,

or menu descriptions.

Finally, note that the world of online auctions has partly begun to provide feedback to

its participants. Google’s auctions for display advertising provide feedback, in the form

21The recent Gonczarowski, Heffetz, and Thomas (2023) discusses the simplicity properties of menu
descriptions in experiments with human participants. Here, we argue that menu descriptions may facilitate
strategy-proof play from algorithmic participants as well.
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of a “minimum bid to win”, after each auction has concluded. The minimum bid to win is

indeed the menu mechanism for a single-item allocation problem. In the next subsection

we will show what a menu description would look like in a simple VCG auction for online

advertising, such as one used by Yandex.ru for their search advertising business.

All formal statements and proofs in this section are presented in Appendix C.

7.1 VCG for Online Search Advertising

Consider the following simple model of search advertising. There are N bidders for a

given query, each with their own value vi ∈ {0,0.1, . . . ,10} for each click. Without loss we

can order bidders by their valuations: v1 ≥ v2 ≥ . . .vN . The search site offers two ad slots.

The first ad slot will bring a predicted traffic volume of 100 units, while the second ad slot

will bring in only 80 units of traffic. The search site is running VCG: all players submit

one bid each, representing the price they would pay for each click, and the winners of

the two slots will be the agents with the two largest bids. Let us assume for simplicity

that ties are broken in favor of the agent with smaller index i. Both winners will pay the

largest losing bid for 80 units of traffic. Additionally, the winner of the first ad slot will

pay the bid of the winner of the second ad slot for the extra 20 units he receives. This

because the pivotal bidder for the last 20 units is the winner of the second ad slot, not the

loser with the largest bid.

Suppose first that all agents report truthfully. Then, agent 1 wins the first ad slot, and

agent 2 wins the second. Agent 2 pays an estimated 80v3, while agent 1 pays 80v3 + 20v2.

Now, imagine agent k was attempting to learn how to play by bidding according to a

reinforcer. The designer would want to provide feedback to the agent, to ensure that he

be able to compute what would have happened, had he bid an amount v̂k , vk, keeping

everyone else’s reports fixed. The feedback required is simple: agent k needs a price

for the second ad slot, and a price for the first. In this example, the designer would

communicate prices v2 and v1.

To see why these prices are sufficient, consider agent k’s calculations. There are only

three possibilities. If he bid v̂k ≤ v2, then he would receive zero payoff, the same as if he

was to bid truthfully. Suppose he bid v2 < v̂k ≤ v1 instead: then agent k would win the

second ad slot, and pay 80v2. Finally, if agent k bid v1 < v̂k, he would win the first ad slot.

His payment would then be 80v2 +20v1. All three counterfactual payoffs only require two

prices: the bids of the two winners.

Similarly, the winner of the second slot requires two prices: v1 and v3. The winner

of the first slot instead requires v2 and v3. In a VCG setting communication reduces to
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revealing the values of the bidders that are pivotal for the specific agent. This is indeed

a menu description, and it is much more private than the full-feedback policy, which

would require communicating all reports v−i to every agent i in the auction.

8 Conclusion

This paper analyzes collusion in games played by online learning algorithms. We take

a theoretical perspective and, complementing burgeoning empirical and numerical ev-

idence, we identify a new driver of collusive behavior specific to algorithmic players.

We first address the issue of analytical intractability of strategic interaction among algo-

rithms by showing that it can be approximated with a dynamical system. Then we apply

this framework to dominant-strategy games, and we show that (ε-)greedy algorithms can

learn to collude. We identify the mechanism sustaining collusion, a statistical linkage we

call spontaneous coupling: when algorithms are slow to realize the value of the competitive

action, joint collusion appears more attractive. Involuntary coupling yields self-fulfilling

biases in the estimates: we demonstrate this intuition in a Prisoner’s Dilemma with Q-

learning agents. We expect the techniques developed to analyze the simple Prisoner’s

Dilemma to yield insight in games with more complex strategic structure. In particular,

we believe similar techniques can help understanding how AI algorithms reach tit-for-tat

strategies when given monitoring technology.

We show that spontaneous coupling may sustain various forms of market manipula-

tion, from price fixing to market splitting. We expect the same arguments to apply to

other forms of anticompetitive conduct as well. In particular, we wish to highlight the

limited role that monitoring plays in a conduct sustained by spontaneous coupling. Reg-

ulation will need to adapt its current policies to account for this truly tacit collusion. We

then design mechanism that are robust to the presence of algorithmic agents. The ideas

we outline are sensible design principles even when dealing with algorithms that are not

reinforcers. For example, regret-minimizing algorithms obtain better guarantees when

provided with counterfactual information.

We view our paper as contributing to the growing literature studying strategic in-

teraction of algorithmic agents. Algorithms shape the dimensions of rationality of these

decision makers, and allow us to carry out a disciplined analysis of equilibria and market

design for such boundedly-rational agents. There are many other dimensions of inter-

est in the study of strategic algorithmic interactions that we do not touch upon in this

paper. For example, we focused on dominant strategy games, which intrinsically make

collusion the hardest to sustain: the outcomes of games where the separation between
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competition and collusion is less stark remains unclear, and worthwhile to pursue. Our

algorithms interact with the environment and adapt according to the feedback they re-

ceive, but many deployed market algorithms are instead trained offline. Offline training

is often prone to unwanted feedback loops, but as our analysis points to correlation as a

key driver of collusion, we suggest that offline algorithms may be less prone to collusive

behavior. Another interesting aspect of algorithmic collusion is whether coordination on

collusive outcomes would be even easier if algorithms were able to retain memory of re-

cent payoff-relevant quantities. We suspect that when algorithms are enabled to learn dy-

namic reward-punishment strategies their collusive behavior will increase substantially,

as highlighted in the literature.

An interesting question is what could a sophisticated player achieve when compet-

ing against automated decision-makers. The manipulability of these algorithms deserves

further analysis, and we believe a setting similar to the one offered in this work could

prove helpful in understanding these questions. Finally, algorithmic decision-making

can be seen as a form of bounded rationality. This implies that the set of implementable

outcomes is, in general, wider than that of rational agents. Theorem 4 suggests that argu-

ments similar to Abreu and Matsushima (1992) could prove useful in enlarging the set of

implementable outcomes; characterizing the set of implementable outcomes for purely

adaptive decision makers is beyond the scope of this paper, but of independent interest.
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Appendix A

We restate Theorem 1 in its more formal version.

Theorem (1). Let (θ,π) be a collection of reinforcers that satisfy Assumption A1 individually,

and let the domainT ⊂R

∑
i di of θ be a compact set. Let (Hj)j∈J be the collection of θ’s maximal

Lipschitz-continuity domains, that is, letHj be the largest open set such that θ is Lipschitz over

Hj and there is a discontinuity on ∂Hj . For all j ∈ J the collection of Cauchy problems



dΘi(t)
dt = αEπi ,π−i

[
D i(πi , r(πi ,π−i),Θi(t))

]

Θi(0) = yi0

has a solution Θi for all i over Hj for all y0 ∈ Hj . There exists a sequence of processes {θn}n∈N
such that:

• E

[
θ1(τ(k))

]
= E [θ(k)] for all k, τ(k) = inf

{
t | θ1(t) jumped k times

}
,

• the infinitesimal generators ADn(θ) are all identical to AD1(θ) for all θ ∈Hj and n,

• limn→∞ P
{

supt≤T
∥∥∥∥θn(t)−Θ(t)

∥∥∥∥ > η
}

= 0 for all T ≥ 0 and η > 0 such that {Θ(t)}t≤T ⊂
Hj .

Proof of Theorem 1. The existence of a solution for the Cauchy problem is guaranteed

by Assumption A1 and the restriction to the maximal continuity domains Hj . In particu-

lar, notice that one can write D i(πi(θ), r(πi(θi),π−i(θ−i),θi) as a map D̂(θ,Y ) where Y is a

random variable representing the uncertainty introduced by the policies π.

We can divide the proof of Theorem 1 in two main steps:

1. Finding the correct continuous-time embedding of the reinforcer θ;

2. Identifying a scaling that guarantees limits are well-defined.

First, let us fix a compact ball of radius r in R

∑
i di . We will consider the set E =H∩B(r)

with the Borel intersection sigma algebra. Since we can choose r to be as large as we want,

the approximation will hold for any finite values of θ. Let us add one component to the

vector θ, in position
∑
i di + 1, which will keep track of the iteration k.

As far as the first step is concerned, let us define a Poisson process N1 of rate λ1 = 1.

Consider the sequence of (stochastic) arrival times 0 < τ1 < τ2 < τ3 < . . .. We define the

process θ1(t) as

θ1(t) = θ(k) if τk+1 > t ≥ τk
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for all times t ≥ 0. The process θ1(t) is a compound Poisson process, cadlag and Markov.

Naturally, its
∑
i di + 1 component always coincides with the iteration k. At arrival times

the algorithm is equal to its continuous time equivalent θ1, which proves item 1 of the

Theorem.

We now want to increase the pace of the updates while retaining the same uncertainty

in expectation. Intuitively, we can “speed up” the Poisson arrivals, but we also need to

“dampen” the jumps accordingly, otherwise the process will diverge to infinity. Formally,

we consider a sequence of Continuous-Time Markov Chains indexed by n ∈N as follows:

• The jump rate λn is defined as λn = n.

• At each jump, the update in the first
∑
i di components is22

θn(t)−θn(t−) =
1
n
D̂(θn(t−),Y )

• At each jump, the update in the coordinate
∑
i di + 1 is

θn(t)−θn(t−) =
1
n

Intuitively, the updates of the original process θ are scaled down by a factor n and the

last coordinate keeps track of how many updates have occurred scaled by n.

Consider then the probability measure µn(x,dz) of the size of the updates starting at

x, with

µn(x,dz) = P

{
θn(τn) ∈ dz|θn(0) = x

}

where τn is the first exit time of θn from x. We define the component-wise function

Fn(x)m = λn

∫
(zm − xm)µn(x,dz), (5)

which intuitively describes the expected jump of θn from x along the m-th component

over one unit of time. In fact, Fn can be rewritten as

Fn(x)m = n
∫
α
n
D̂m(x,Y )µ =

∫
αD̂m(x,Y )µ.

We chose the scaling in such a way that the function Fn is independent of n. The function

Fn is exactly the infinitesimal generator of the compound Poisson process θn(t), therefore

item (2) of the Theorem is proved.
22Note that we omit the dependence on the iteration since iterations are now part of the process θn.
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Let F(x) B limn→∞Fn(x). It is clear that F(x) = Fn(x) for all n. Moreover the function

F(x) is Lipschitz in every component. We will need a technical lemma:

Lemma 1. Let E be a compact set in R
|I |×|S|×|A|. There exists a sequence {εn}n > 0 with

limn→∞ εn = 0 such that

lim
n→∞sup

x∈E
λn

∫

|z−x|>εn
|z − x|µn(x,dz) = 0

Moreover,

sup
n

sup
x∈E

λn

∫

E
|z − x|µn(x,dz) <∞

Proof. Since E is compact D̂(θ,Y ) must be bounded. Let M = supθ∈E D̂(θ,Y ) across di-

mension, and note that M < +∞. Let then {Mn }n be a sequence satisfying the assumptions

of the Lemma, and notice that
∫
|z−x|>εn |z − x|µn(x,dz) = 0 for all x and n. We thus proved

the first claim. The second claim follows a simple observation: |z − x|µn(x,dz) ≤ M
n for all

x. Since λn = n, we obtain that

sup
n

sup
x∈E

λn

∫

E
|z − x|µn(x,dz) =M <∞

which concludes the proof.

This lemma verifies one of the conditions of the following Theorem taken from Kurtz

(1970):

Theorem 2.11. Suppose there exists E ⊂ R
k, a function F : E → R

k and a constant M such

that |F(x)−F(y)| ≤M |x − y| for all x,y ∈ E and

lim
n→∞ sup

x∈En∪E
|Fn(x)−F(x)| = 0

Let X(t,x0),0 ≤ t ≤ T ,x0 ∈ E satisfy

X(0,x0) = x0, Ẋ(t,x0) = F(X(t,x0))

Suppose additionally that the sequence Fn satisfies the conditions of Lemma 1, then for every

η > 0

lim
n→∞P

{
sup
t≤T
|Xn(t)−X(t,x0)| ≥ η

}
= 0

If X(t,x0) = Θ, we can verify that the assumptions of the Theorem hold:
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• since D̂ is Lipschitz, and Fn = F are integrals of Lipschitz functions, it is clear that

|F(x)−F(y)| ≤M |x − y| holds,

• limn supx∈H |Fn(x, t)−F(x, t)| = 0 is satisfied by definition of Fn = F,

• the conditions of Lemma 1 are verified.

Then, Theorem 2.11 implies that for every η > 0

lim
n→∞P

{
sup
t≤T
|θn(t)−Θ(t)| ≥ η

}
= 0

which proves item 3 of the Theorem and concludes the proof.

As advanced at the beginning, the process Θ is a deterministic process with all uncer-

tainty collapsed into the drift component.

Proof of Proposition 2. This result relies on the following theorem from Filippov (1988):

Theorem 1, Chapter 2, Section 7. Let S be a compact domain. Let G(t,x) be a nonempty,

bounded, closed, convex set-valued function that is upper semicontinuous in t,x for all (t,x) ∈
S. Then for any point (t0,x0) ∈ S there exists a solution of the problem

ẋ ∈ G(t,x), x(t0) = x0

and if the domain S contains a cylinder Z(t0 ≤ t ≤ t0 + a, |x − x0| ≤ b), the solution exists at

least on the interval

t0 ≤ t ≤ t0 + d, d = min
{
a;
b
m

}
m = sup

Z
|G(t,x)|

Let G(t,x) be defined as the vector field given in the statement of Proposition 2, and

notice that G is time-invariant; also let S be a compact ball in R ×R|I |×|A|. We show that

G satisfies all the conditions:

• it is nonempty over R×R|I |×|A|,

• it is bounded everywhere, since each individual Fa is bounded over ωa,a ∩ S,

• it is closed and convex, as it is clear from the definition above,

• it is upper semicontinuous: to see this, select a convergent sequence in the domain.

If the sequence is entirely contained in a ωj , then continuity is clear. Instead, sup-

44



pose that the sequence lies in an ωa,a but its limit lies on ∂ωa,a. Upper semiconti-

nuity is guaranteed by the definition of G as a convex combination of F over the

overlapping boundaries.

Additionally, note that the domain is any compact ball, therefore we can find a S that

contains any cylinder Z and a solution to this differential inclusion is global within any

compact subset of R|I |×|A|.

Proof of Proposition 1 The existence of the equilibrium q
eq
D follows directly from setting

the field over ωD,D to zero.

We prove existence of qeqC and its related property for one agent; by symmetry, the

other agent’s Q-values enjoy the same properties. The boundary is defined as Σ = {q ∈
R

2 : c · q = 0} where c = (1,−1) and · denotes the usual dot product. Using the Filippov

convention, we can further divide Σ in three regions:

• a crossing region, Σc = {q : (c · (ACq+ bC))(c · (ADq+ bD)) > 0}

• a repulsive region, Σr = {q : c · (ACq+ bC) > 0, c · (ADq+ bD) < 0}

• a sliding region, Σs = {q : c · (ACq+ bC) < 0, c · (ADq+ bD) > 0}

where we have

AC =



α
(
1− ε2

)
(γ − 1) 0

αγ ε2 −α ε2


 AD =



−α ε2 αγ ε2

0 α
(
1− ε2

)
(γ − 1)


 ,

and

bC =



α
(
1− ε2

)(
2− ε2

)
g

α ε2
(
2 + g − g ε2

)

 bD =




α
(
1 + ε

2

)
ε
2g

α
(
1− ε2

)(
2 + ε

2g
)

 .

We can define the sliding solution as the field dQ
dt = Fs(Q) over the sliding region where

Fs(Q) =
c · (ADQ + bD)(ACQ + bC)− c · (ACQ + bC)(ADQ + bD)

c · (ADQ + bD)− c · (ACQ + bC)

The relative time spent on ωC,C at point Q is defined as

τC =
c · (ADQ + bD)

c · (ADQ + bD)− c · (ACQ + bC)
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The sliding vector field becomes

dQj

dt
=
α
(

1
2εg(2− ε)(g − 1) + (2g + (γ − 1)Qj)(2 + (γ − 1)Qj)

)

2(1 + g + (γ − 1)Qj)

for every direction j. By setting the field equal to zero and solving for Qj , we find that

there is an equilibrium at

q
eq
C,j =

1 + g +
√

(g − 1)(g − 1− εg + ε2g
2 )

(γ − 1)

for all j. This equation has a feasible solution for all ε < 1−
√

2−g
g .

Proof of Corollary 1. The result follows immediately from the proof of Proposition 1.

In particular, it is sufficient to compute

τC =
c · (ADQ + bD)

c · (ADQ + bD)− c · (ACQ + bC)

at Q = qeqC .

Proof of Theorem 2. First off, notice that payoffs in a Prisoner’s Dilemma are ordered

as follows:

r(D,C) > r(C,C) > r(D,D) > r(C,D)

We will prove existence of a stationary point on the switching surface for a system defined

as follows: 
θ̇C = α

[
U (θC , r(C,C)) +V (θ)

]

θ̇D = (1−α)
[
U (θD , r(D,C)) +V (θ)

]

in the half-plane where C is the preferred action, and


θ̇C = (1−α)

[
U (θC , r(C,D)) +V (θ)

]

θ̇D = α
[
U (θD , r(D,D)) +V (θ)

]

in the half-plane where D is the preferred action. Note that we are assuming WLOG that

the learning speeds sum to 1, since all it matters is the relative speed of learning. To start,

let us assume α is identical across the half planes.
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Figure XI: Homotopy

We want to show that there exist an α and a θ∗ such that:

αU (θ∗, r(C,C)) + (1−α)U (θ∗, r(C,D)) +V (θ∗) = 0

(1−α)U (θ∗, r(D,C)) +αU (θ∗, r(D,D)) +V (θ∗) = 0
(6)

Because we used the same α on both sides, we are simply looking for a translation of

Equation (6), therefore we can develop the argument disregarding the V (θ∗) component.

For a given θ, we can write this problem as a convex combination of two vectors:

α~x+ (1−α)~y = ~0

where

~x(θ) =



U (θ,r(C,C))

U (θ,r(D,D))


 ~y(θ) =



U (θ,r(C,D))

U (θ,r(D,C))




Let θ1 be the value of θ such that U (θ1, r(C,C)) = 0. Then, using the monotonicity of U

in rewards, the two vectors ~x,~y computed in θ1 will be positioned as in Figure XI. Let

θ2 instead be the value of θ such that U (θ2, r(C,D)) = 0. Again, the two vectors ~x,~y are

positioned as in Figure XI. Notice that by monotonicity of U in its first component, θ1 >

θ2. The same assumption guarantees that the lines ~y(θ1 +(θ2−θ1)t) and ~x(θ1 +(θ2−θ1)t)

lie on the left and right of the vertical axis, respectively.
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Define f : [0,1]→R
2 as

f (t) =



(1− 4t)~x(θ1) + 4t~y(θ1) t ∈
[
0, 1

4

]

~y
(
θ1 + (θ2 −θ1)(4t − 1)

)
t ∈

[
1
4 ,

1
2

]

(3− 4t)~y(θ2) + (4t − 2)~x(θ2) t ∈
[

1
2 ,

3
4

]

~x
(
θ1 + 4(θ2 −θ1)(1− t)

)
t ∈

[
3
4 ,1

]

Note that, by continuity of U , f (t) is a loop based in x(θ1). We can show that f is

null-homotopic by providing the following simple homotopy H : [0,1]× [0,1]→R
2.

H(t, s) =



(1− 4ts)~x(θ1) + 4ts~y(θ1) t ∈
[
0, 1

4

]

(1− s)~x
(
θ1 + s(4t − 1)(θ2 −θ1)

)
+ s~y

(
θ1 + s(4t − 1)(θ2 −θ1)

)
t ∈

[
1
4 ,

1
2

]

(1− s(3− 4t))~x
(
(1− s)θ1 + sθ2

)
+ s(3− 4t)~y

(
(1− s)θ1 + sθ2

)
t ∈

[
1
2 ,

3
4

]

~x
(
θ1 + 4s(θ2 −θ1)(1− t)

)
t ∈

[
3
4 ,1

]

We verify that H is a homotopy between f (t) and the constant path at ~x(θ1).

• H(0, s) =H(1, s) = ~x(θ1)

• H(t,0) = ~x(θ1)

• H(t,1) = f (t)

Suppose now that there is no pair t, s such that H(t, s) = (0,0). Then, by continuity

it must be the case that there is an open neighborhood V 3 (0,0) such that for all points

z ∈ V , z < Im(H). Note that we can restrict the loop f to a the domain R
2 \ V , and

because V < Im(H) we can restrict the homotopy to a homotopyH : [0,1]2→R
2 \V . Thus

we proved that a loop around the open set V is null-homotopic, which is equivalent to

proving that R2 \V is simply connected, a contradiction.

Therefore, there exists a pair t, s such that H(t, s) = (0,0). There is a bijective trans-

formation between t, s and θ,α over their respective domains, which guarantees that the

system of Equation (6) is satisfied.

Notice that we allowed for α ∈ (0,1) so far. However, it makes little sense to allow for

α < 1
2 : the algorithm would learn about actions it considers suboptimal faster than those

he considers best. Fortunately, we observe the following:

1
2
U (θ,r(C,C)) +

1
2
U (θ,r(C,D) <

1
2
U (θ,r(D,C)) +

1
2
U (θ,r(D,D).
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This inequality follows from the ordering of rewards in a Prisoner’s Dilemma game. This

in particular implies that the line 1
2~x(θ1 + (θ2−θ1)t) + 1

2~y(θ1 + (θ2−θ1)t) lies above the 45

degree line. Thus, we can restrict the homotopy to the parameter space α ∈ [1
2 ,1] without

affecting the result. This guarantees the existence of a parameter α > 1
2 which sets the

sliding vector field to zero.

Now, notice that in the previous construction in Equation (6) we solved for α and θ∗

such that the local time was equal on both sides of the switching boundary. We can relax

this assumption so that Equation (6) becomes


ατU (θ∗, r(C,C)) + (1−α)(1− τ)U (θ∗, r(C,D)) = 0

(1−α)τU (θ∗, r(D,C)) +α(1− τ)U (θ∗, r(D,D)) = 0.
(7)

Following the previous construction, we get

~x(θ) =




τU (θ,r(C,C))

(1− τ)U (θ,r(D,D))


 ~y(θ) =



(1− τ)U (θ,r(C,D))

τU (θ,r(D,C))




The points ~x(θi), ~y(θi) for i = 1,2 each remain on their respective quadrants, enabling

us to construct the same, rescaled, homotopy for this case. Therefore, for each τ we can

identify a pair ατ ,θ∗(τ) such that Equation (7) is satisfied.

Not all solutions to Equation (7) are steady-states however. Recall from our construc-

tion in Section 3 that we need to verify a sliding condition: the normal components of the

two vector fields to the switching surface must have opposite sign and must be attractive.

In equations, this translates to the following system which needs to be satisfied:


(1−ατ )τU (θ∗(τ), r(D,C))−ατU (θ∗(τ), r(C,C)) ≥ 0

ατ(1− τ)U (θ∗(τ), r(D,D))− (1−ατ )(1− τ)U (θ∗(τ), r(C,D)) ≤ 0.
(8)

We need a preparatory lemma:

Lemma 2. The only region of θ where Equation (7) can be verified is such that

U (θ,r(D,C)) > U (θ,r(C,C)) ≥ 0 > U (θ,r(D,D)) > U (θ,r(C,D))

Proof. The statement follows immediately from inspection of Figure XI. Since the path

~y(θ1 +(θ2−θ1)t) for all t falls within the second quadrant, any ~x(θ∗) which satisfies Equa-

tion (7) must fall within the fourth quadrant, which directly implies the result.
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Now, rearranging Equation (7) we derive the following equalities:


−(1−ατ )(1− τ)U (θ∗(τ), r(C,D)) = αττU (θ∗(τ), r(C,C))

−(1−ατ )τU (θ∗(τ), r(D,C)) = ατ(1− τ)U (θ∗(τ), r(D,D))

Substituting these in Equation (8) and rearranging, we obtain


αττU (θ∗(τ), r(C,C)) +ατ(1− τ)U (θ∗(τ), r(D,D)) ≤ 0

ατ(1− τ)U (θ∗(τ), r(D,D)) +αττU (θ∗(τ), r(C,C)) ≤ 0

Thus, only one condition needs to be satisfied to guarantee sliding:

τU (θ∗(τ), r(C,C)) + (1− τ)U (θ∗(τ), r(D,D)) ≤ 0

Lemma 2 guarantee that a solution to this inequality exists for τ sufficiently close to 0. In

particular, there exists a τ such that for all τ ≤ τ we obtain sliding. Therefore there exists

an open set of parameters {ατ | τ ≤ τ} such that a sliding steady-state exists. Now, we

can perturb the value of α on either side of the sliding boundary. The region we derived

depends continuously from α, in particular from αC and αD . Therefore, the same result

holds for small perturbations of α into different αC and αD , concluding the proof of the

Theorem.

Proof of Theorem 3. We set to prove that, in the limit, the statistic θn of the dominant

action dominates the statistic θi of any other non-dominant action. First of all, since αai

is identical across actions, the evolution in time of θ is shifted by V (θ), but V won’t affect

the relative rankings of the actions’ estimates. Therefore, we drop V in the rest of the

proof, and we focus on U .

Regardless of the opponent’s policy, the reinforcer in every step observes a return

in hindsight for every action. We denote by rn(t) the return from playing action n in

period t, whatever the opponents’ actions are. We consider the evolution of the weights

pairwise: θn and θi for all i. By assumption, for any sequence of actions taken by the

opponent(s), rn(t) ≥ ri(t). In particular, Assumption A3 guarantees that there exists a

T > 0 such that rn(t) > ri(t) for any t > T . Thus, in the limit the derivative θ̇n strictly

dominates θ̇i in each point (x, t): U (x,rn(t)) > U (x, , ri(t)). In particular, there exists a ε

such that U (x,rn(t)) > U (x,ri(t)) + ε.
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Suppose now that for some t ≥ 0, θn(t) = θi(t). We prove that it can never be the

case that θi(T ) > θn(T ) for some T > t. θn(t) is a solution to the ODE given by θ̇n(t) =

U (θn(t), rn(t)) and

U (θn(t), rn(t)) ≥U (θn(t), ri(t)) =U (θi(t), ri(t))

Thus, θ̇i(t) < U (θi(t), rn(t)) = θ̇n(t), which implies that θn(t + ∆) > θi(t + ∆) for ∆ small

enough. Thus, for any T > t there can only be two cases: either θn(T ) > θi(T ), or θn(T ) =

θi(T ); but we have just shown that if the latter case occurs, θi will stay below θn again

Consider instead the case where θi(T ) > θn(T ) for some T > 0. From Definition 5, we

have that

U (θi(T ), ri(T )) ≤U (θi(T ), rn(T )) < U (θn(T ), rn(T ))

We want to show that there exists a t > T such that θn(t) = θi(t). To this end, suppose by

contradiction that ∀t > T , θi(t) > θn(t). Observe that the previous inequalities imply that

d
ds

∣∣∣∣∣
s=t

(θi(s)−θn(s)) < 0 ∀t > T . (9)

Then, (θi(t)−θn(t)) is a monotone decreasing function of time. Because the algorithm is

bounded, it must be the case that

lim
t→+∞(θi(t)−θn(t)) = b ≥ 0. (10)

From the definition of limit and the monotonicity of the derivative, for any ε there exists

a t′ > T such that, for all t > t′,

θn(t) + b ≤ θi(t) < θn(t) + b+ ε.

However, strict monotonicity of the reinforcer’s update implies that there exists a δ > 0

such that

U (θi(t), ri(t)) ≤U (θn(t), ri(t)) < U (θn(t), rn(t))− δ. (11)

Note that, by Equation (10) and the monotonicity given by Equation (9), the limit of the

derivative of the difference θ −θn be 0:

lim
t→+∞(θ̇i(t)− θ̇n(t)) = lim

t→+∞(U (θi(t), ri(t))−U (θn(t), rn(t))) = 0

This is a contradiction of Equation (11). Then, there must exist a t such that θi(t) =
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θn(t). From the first part of the proof, this implies that ∀t′ > t we have θi(t′) ≤ θn(t′). In

summary then, either θn(0) ≥ θi(0), which implies θn(t) ≥ θi(t) for all t > 0, or θn(0) <

θi(0), which implies that there exists T such that θn(t) ≥ θi(t) for all t ≥ T . This concludes

the proof.

Proof of Theorem 4. The proof is largely based upon Theorem 3. We will show that

there is always a T such that the actions taken after T survive an IESDS procedure.

Let ai be a strategy for player i which is dominated by bi in the game G. With the

same argument of the proof of Theorem 3 we can show that it must be the case that there

exists a T1 such that for all t ≥ T1 we have θb
i
(t) ≥ θai (t). Notice that if θb

i
(t) = θa

i
(t), then

θ̇b
i
(t) > θ̇ai (t), which implies that for all t′ > t we have a strict inequality θb

i
(t′) > θai (t′).

Therefore, after time T1 it is as if the agents were playing in a reduced game G1 =

(N, (A1
i )i , (ui)i), where A1

i = Ai \ {ai} and A1
j = Aj for all j , i.23 We can now apply the

same idea to this new reduced game G1 and eliminate a strictly dominated strategy in

this reduced game. While IESDS eliminates strategies “in place”, the algorithms abandon

dominated strategies over time, reducing the effective game played. Of course, the com-

ponents of θ that correspond to dominated actions keep getting updated, but note that if

an action is dominated given a larger subset of opponent’s strategies, it is also (weakly)

dominated given a smaller subset. Therefore, following the usual differential inequality

argument, the θ corresponding to a dominated action will always remain below that of

actions surviving IESDS. We then define T as the largest among the Tk that correspond to

an action being eliminated, and this concludes the proof.

Appendix B

In this Appendix we discuss the chaotic theory of the system in Section 3. Chaos the-

ory studies non-linear dynamical systems whose trajectories appear stochastic, but are

the result of deterministic laws of motion. The most commonly accepted definition of

chaotic behavior is high sensitivity to small perturbations in initial conditions: a system

is said to be chaotic if the distance between two trajectories originating from different yet

arbitrarily close points grows unboundedly (Holden (2014)).

Let us consider again the dynamical system of Equation (4), where we now relax As-

sumption S and allow Alice’ and Bob’s Q-values to be initialized in different points. Fol-

23Of course, Assumption A3 guarantees that even action ai will be played with some positive probability,
but the statement of Theorem 4 guarantees that the probability is small enough to not affect the order of
the expected rewards.
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lowing the above definition of chaotic system, we plot in Figure XII the evolution ofQAC(t)

for two instances with slightly different QAC(0), as well as the distance between the two

trajectories. Despite their very similar initial point the two trajectories vary wildy, and

their distance increases by 20 orders of magnitude: it is clear that the 4-dimensional

system outside the scope of Assumption S exhibits chaotic behavior.

x

24

26

28

30

32

n
0 5.00×10⁴ 1.00×10⁵ 1.50×10⁵ 2.00×10⁵

d

e⁻²⁰

e⁻¹⁵

e⁻¹⁰

e⁻⁵

e⁰

Figure XII: The top figure depicts the evolution of (the first component of) two trajectories
with minimal perturbations of their initial conditions. The bottom figure represents the
absolute distance between these two trajectories, in logarithmic scale. After an initial
convergence, hitting the boundary leads to exponential divergence (the green line has
constant slope upwards in the logarithmic scale). Finally the trajectories saturate, i.e. the
boundedness of trajectories limits their absolute divergence.

The deterministic chaos we observe makes any stability analysis impossible. In Fig-

ure XIII we plot a single trajectory of the 4-D system in the space of differences, and we

observe that it seems to behave erratically and upredictably: the “butterfly” traced by

the trajectory appears hard to characterize. However, the heatmap shows that most of

the time is spent in a region where the estimates of cooperation and defection coincide.
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In other words, most of the time the system will show equal values for cooperation and

defection for both Alice and Bob. Therefore, it seems that the sliding analysis we carried

out in the symmetric case is not too far off the mark in the 4-D case as well, as one can also

see in Figure VIIb: the gap between the predicted local time and the realized local time

is due to the asymmetry that always arises in the discrete algorithmic system. It appears

that the coordination bias’s cycles take place in 4 dimensions — they do not collapse on

a pseudo-equilibrium.
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Figure XIII: A chaotic trajectory of the system of Equation (4) in a 2-D representation.
On the left, we depict the motion in the difference space. Agents appear chaotically
attracted to a butterfly-like motion around the origin. The figure on the right represents
the logarithmic density of time spent in a given square cell of side 0.2. Effectively, over
90% of time is spent in the square centered on the origin.

B.1 Sliding Surfaces and Chaos

We now formalize some of our claims above. Consider the system of Equation (4) and

let Fa,a′ denote the vector field in region ωa,a′ . There exist two switching surfaces, one for

Alice (ΣA) and one for Bob (ΣB), given by:

ΣA =
{
Q ∈R4 : QAC =QAD

}

ΣB =
{
Q ∈R4 : QBC =QBD

}
.

Using our notation, ΣA =
(
ωC,C ∩ωD,C

)⋃(
ωC,D ∩ωD,D

)
, and ΣB =

(
ωC,C ∩ωC,D

)⋃(
ωD,C ∩ωD,D

)
.

Sliding motion, if any, occurs on these hyperplanes, provided the vector fields on each
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side “point” in the right direction. In particular, if the system is on Σ = ΣA ∩ΣB, there

might be double sliding. Intuitively, double sliding occurs when the vector fields in all

four regions “push” the system towards surface Σ. We make this formal following the

definition of Dieci and Lopez (2011).

Let N̂i denote a vector in R
4 orthogonal to Σi , where, without loss of generality, we

choose N̂i such that it points towards the region of space where QiC > Q
i
D . Surface Σ is

said to be nodally attractive if the following hold on, and in a neighbourhood of, Σ:

N̂A ·FD,D > 0, N̂A ·FD,C > 0, N̂A ·FC,D < 0, N̂A ·FC,C < 0

N̂B ·FD,D > 0, N̂B ·FD,C < 0, N̂B ·FC,D > 0, N̂A ·FC,C < 0.
(12)

In words, Equation (12) requires each surface Σi to be sliding irrespective of the action

of the opponent: if the system is initialized in a region of the space where Σ is nodally

attractive, it will first slide on either Σi towards Σ, where it finally begins the double

sliding motion.

Suppose for simplicity that γ = 0.24 When the system is on Σ, Q = [q,q,q′,q′]T for

some q,q′ ∈R and the conditions in Equation (12) become

q > q = g + 1 +
ε2

2 g + 1− εg
1− ε

q′ > q = g + 1 +
ε2

2 g + 1− εg
1− ε

which square well with Figure V, which shows that in the symmetric case, the switching

surface is sliding only for large enough values of the estimates. The right-hand sides

of the above conditions are the same because, even if Alice’s and Bob’s estimates are no

longer symmetric, their laws of motion are. In fact, q can be equivalently characterized

as

q = max
{
q : ∃(a,a′) ∈ {C,D}2 s.t. N̂A ·Fa,a′

(
[q,q,x,y]T

)
= 0, [q,q,x,y]T ∈ωa,a′

}
, (13)

or, in words, the largest value of the estimates such that if Alice were sliding on her

switching surface ΣA, her vector field in at least one of the partitions of the space be-

comes parallel to ΣA ,i.e., Q̇A(C) = Q̇A(D). Since the game is symmetric, we could replace

Alice with Bob in Equation (13) and obtain the same result. The structure of payoffs of

any Prisoner’s Dilemma implies that the ω where Alice’s vector field becomes parallel to

24The same analysis goes through with γ > 0, but equations are somewhat more involved and less trans-
parent to parse.
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her switching surface is ωD,C : it is exactly when she defects most of the time and Bob

cooperates that Alice obtains the largest payoff.

The codimension of Σ is 2; while the theory of Filippov (1988) is sufficient to uniquely

pin down the sliding vector field for sliding surfaces of codimension 1, it is well-known

that for codimension greater than one this is no longer possible. Dieci and Lopez (2011)

suggests defining the weighted vector field using a bilinear formulation and proves that

if the sliding surface satisfies nodal attractivity, the vector field thus obtained is unique.

Formally, let CA(Q) ∈ [0,1] and CB(Q) ∈ [0,1] be some functions of the state of the system:

we interpret CA(Q) as the weight associated to any FC,a′ , where for a′ = C,D, and similarly

for CB(Q). Dieci and Lopez (2011) proves that there exist unique functions CA(Q) and

CB(Q) such that for every Q ∈ Σ satisfying nodal attractivity the following holds:25



CACBN̂A ·FC,C + (1−CA)CBN̂A ·FD,C + (1−CB)CAN̂A ·FC,D + (1−CA)(1−CB)N̂A ·FD,D = 0

CACBN̂A ·FC,C + (1−CA)CBN̂B ·FD,C + (1−CB)CAN̂B ·FC,D + (1−CA)(1−CB)N̂B ·FD,D = 0
(14)

This condition has the same intuition of the construction mentioned in Section 3.2: by

appropriately selecting CA(Q) and CB(Q) one can obtain a vector field that is parallel to Σ

so that the trajectories of the system remain contrained on the double sliding surface as

long as this is nodally attractive.

In our system, there exists no steady state on the sliding boundary. In fact, since we

argued that q is such that

N̂A ·FD,C
(
[q,q,x,y]T

)
= 0,

it must be that all vector fields have strictly negative parallel components to the double

sliding surface Σ as long as the estimates are above q. Finally, this implies that there can-

not exist any mixing of the type of Equation (14) such that the combined vector field on Σ

vanishes. Formally, when Alice’s estimates reach q, the system leaves the 2-dimensional

surface Σ so that its motion can no longer be described by the nodally attractive sliding

vector field. However, notice that the description of spontaneous coupling developed in

Section 3.3 does not require a full characterization of the motion; while based on the in-

sights derived from the sliding motion of the symmetric system, it is more general since

it relies only on understanding how the estimates move across the ω sets. As we argue

in Figure XIII, the system indeed spends the vast majority of the time in a small neigh-

bourhood of the switching surface Σ: while we cannot characterize the laws of motion

25Omitting dependence on Q for readability.
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on Σ, we know the incentives that move the estimates from one ω to the other. Because

of chaos, the “cycling” patterns we observe in the discrete system also remain in the

continuous-time counterpart instead of collapsing onto a single point;26 nevertheless,

they are consistent with our higher level understanding of spontaneous coupling.

Appendix C

In this Appendix we formalize the somewhat loose definitions given in Section 7 and we

prove Theorem 5.

First, note that we can define an equivalence relation on the outcome space, ∼i , such

that x ∼i y if and only if ui(x,λi) = ui(y,λi) for all λi ∈ Λi . Let Xi = X / ∼i be the quotient

of the outcome space with respect to this equivalence relation. We will refer to an element

of Xi , an equivalence class [x]i , as an i-outcome.

Let us define formally what it means to provide ex-post feedback.

Definition 9. A feedback policy for mechanism f and agent i is a factorization of f through

a partition. It is composed of the following elements:

• A signal space S, which is a partition of Λ−i ;

• A map φi : Λ−i → S;

• A map g : Λi × S→Xi ;
such that

• The diagram commutes, i.e. [f (λi ,λ−i)]i = g(λi ,φi(λ−i)) for all λi ,λ−i ;

• The map φi is a partition map, i.e. φi(λi) 3 λi .
We denote a feedback policy by its map φi . A collection (φi)i of feedback policies for each

agent i is a feedback structure.

Remember the loose definition of Section 7: a feedback policy for agent i is a partition

of the space of opponents’ types, Λ−i . This partition is such that agent i can evaluate

what outcome he could have enforced had he unilaterally deviated to a different report

λi . We request that a feedback policy allows agent i to compute all of his i-outcomes for

any given report.

Next, we formalize the desire for reduced communication and revelation. We define

the following partial order on feedback policies:

26We use quotes because, formally, a chaotic system cannot display period behaviour.
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Definition 10. Feedback policy φi is more private than feedback policy ψi , denoted φi D

ψi , if φi(λ−i) ⊇ ψi(λ−i) for all λ−i .

Any two type profiles that are indistinguishable under a less private rule should be

indistinguishable under a more private rule. As mentioned, the privacy order is a weak

partial order: not all feedback policies are comparable. However, it turns out that un-

der the privacy order maximum and minimum are well-defined: the feedback policies

together with the privacy order form a lattice.

Proposition 4. Feedback policies together with the privacy order form a complete lattice.

Proof. We simply need to show that for any two elements φi ,ψi there exist a join φi ∨ψi
and a meet φi ∧ ψi which satisfy the feedback policy definition. The argument follows

from the lattice structure of the set of partitions with the partial order coarser-than. Note

that φ−1
i ({x : x ∈Λ−i}) defines a partition of the space Λ−i , and the same is true for the ψi .

We then require the preimage of join (φi ∨ψi) to be the finest partition which is coarser

than both the preimages of φi and ψi . Formally, let A ⊂ φ−1
i ({x : x ∈ Λ−i})∨P ψ−1

i ({x : x ∈
Λ−i}), then

(φi ∨ψi)(λ−i) = (φi ∨ψi)(λ̂−i) for all λ−i , λ̂−i ∈ A
Similarly, define the meet as the function φi ∧ψi such that it is constant over the meet

of the two partitions. Again, let B ⊂ φ−1
i ({x : x ∈Λ−i})∧P ψ−1

i ({x : x ∈Λ−i}), then

(φi ∧ψi)(λ−i) = (φi ∧ψi)(λ̂−i) for all λ−i , λ̂−i ∈ B

The completeness of the lattice structure descends directly from the completeness of the

partition lattice.

Proposition 4 implies that there exist both a minimally- and a maximally-private feed-

back policy. The minimally-private policy is the full-revelation feedback policy: it re-

veals all information, and it is clearly less private than any other feedback policy. The

maximally-private rule instead is a menu description.27

Definition 11. Let [x]i be the equivalence class of outcome x inXi . A menu for mechanism

f and agent i, given reports λ−i of the opponents, is the set

Mλ−i =
{

[f (λ̂i ,λ−i)]i | λ̂i ∈Λi

}
.

27Note that we defined the privacy lattice for feedback policies, not for feedback structures. When we
analyze feedback structures, we implicitly consider the product lattice on the product space of feedback
policies. This is correct because we assume private communication, but the analysis would likely change if
we allowed public communication.
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That is, the menu is the set of outcomes such that agent i could have received had he

reported any type in his type space.

We can show that from the collection of all possible menus {Mλ−i }λ−i we can construct

a feedback policy, and it is the maximally private feedback policy for agent i.

Lemma 3. There exists a feedback policy µi corresponding to the collection of menus {Mλ−i }λ−i ,
and µi is the maximally private feedback policy for agent i.

Proof. Consider the space Λ−i with the following equivalence relation:

λ−i ∼ λ̂−i iffMλ−i =Mλ̂−i

and denote its quotient by Λ−i/ ∼. An element of the quotient is an equivalence class of

opponents’ types, denoted by
[
λ−i

]
. Since ∼ is an equivalence relation, the quotient set

Λ−i/ ∼ is a partition of Λ−i . Let

µi : Λ−i → Λ−i/ ∼
λ−i 7→

[
λ−i

]

Let us show first that µi satisfies the definition of feedback policy. Of course, µi is a par-

tition map: an element always belongs to its equivalence class. Define g as the func-

tion g
(
λi ,

[
λ−i

])
:= [f (λi ,λ−i)]i . Commutativity then follows from the fact that for all

λ−i ∈
[
λ−i

]
the menusMλ−i coincide.

Now, we need to show that there is no feedback policy which is more private than µi .

Equivalently, we can show that there is no feedback policy φi such that φi . µi . Suppose

instead such a φi exists. Then, it must be that there exists a λ−i such that φi(λ−i) ⊃ µi(λ−i).
Then there exists a λ̂−i ∈ φ(λ−i) such that λ̂−i is not in the same equivalence class of λ−i .
This implies that Mλ−i is a different menu than Mλ̂−i . Then, there exists a λi such that

[f (λi ,λ−i)]i , [f (λi , λ̂−i)]i . We have then that g(λi ,φ(λ−i)) = [f (λi ,λ−i)]i , [f (λi , λ̂−i)]i =

g(λi ,φ(λ−i), a contradiction.

We observe another interesting property of the privacy order that stems from its con-

nection with the set of partitions of the power set of Λ−i :

Corollary 3. The communication complexity of a feedback policy is monotonically decreasing

in the privacy order.

The maximally private feedback policy has the lowest communication complexity and

it maintains the highest level of privacy. Our characterization says that the most private
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mechanisms are not particularly esoteric: they provide menu descriptions, which are

well-known for their simplicity.

Appendix D

The contribution game of Section 3 can be seen as a particular one-dimensional parametriza-

tion of the Prisoner’s Dilemma. In this Appendix we extend our analysis to general sym-

metric Prisoner’s Dilemma games. We parametrize them as described in Figure XIVa.

We normalize the cooperation payoff to 1 and the sucker’s payoff to 0, while we vary the

payoff to deviation x and the payoff to mutual defection y.

Alice

Bob

C D

C 1,1 0,x

D x,0 y,y

(a) Payoffs of the stage game.
1 < x < 2, 0 < y < 1.
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0
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0.8

1

x

y
ε = 0.1
ε = 0.2
ε = 0.4
ε = 0.6

(b) Existence of cooperative pseudo-steady-state in the Pris-
oner’s Dilemma parameter space.

Figure XIV

We can replicate the analysis carried out for the contribution game in this more gen-

eral setting, and we reach similar conclusions.

Proposition 5. Consider a Prisoner’s Dilemma with payoffs as in Figure XIVa played by ε-

greedy Q-learning algorithms. The forward limit set of Q is a singleton for any initial condi-

tion. Suppose the following inequalities are satisfied:


1 < x < 4+2ε−ε2

2ε−ε2 − 4
√

1
2ε−ε2 ,

0 ≤ y ≤ −4
√

(ε−2)2ε2[ε2(x−2)−2ε(x−2)+4(x−1)]
(4−2ε+ε2)4 + 16−4ε3(x−1)+ε4(x−1)−8ε(x+2)+4ε2(1+2x)

(4−2ε+ε2)2

(15)
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Then, there are two regions of attractions, RC and RD . Initial conditions in either region are

attracted to two different steady states, qC and qD respectively. The steady-state qD lies in

ωD,D , while qC is a pseudo-steady-state — it lies in ωC,C ∩ωD,D .

If Equation (15) is not satisfied, all initial conditions are attracted to the steady-state qD .

The conditions for existence of a pseudo-steady-state appear complex, but the visual-

ization in Figure XIVb helps disentangling the various forces at play.

The higher the exploration rate, the more extreme the parameters x,y need to be to

sustain the cooperative equilibrium. When both x and y are large the payoff from mu-

tual defection is close to mutual cooperation, and a one-period defection provides large

unilateral benefits. These are the cases providing the strongest incentives for defection,

while when both x and y are low the opposite is true. The Figure reflects these intuitions

for various levels of exploration.
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