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Abstract

We study the problem of an institution that targets aid to its needy members,
where need is determined by observed performance. This introduces incentives to
shirk to qualify for aid. Examples include colleges allocating financial aid to students
and U.S. sports leagues assigning newly eligible players to teams. We prove that no
targeting mechanism based on cumulative performance can avoid introducing perverse
incentives. We show that the optimal allocation rule is computationally infeasible. We
design a simple, incentive-compatible, and dynamic mechanism that targets low-ranked
agents based on their performance history up to an endogenous stopping time. We
prove the mechanism is optimal among a large subset of allocation rules. Using data
from the NBA, we show how our mechanism aligns incentives and improves targeting.

Keywords: Incentive-Compatible Mechanism, Institutional Design, Targeting
JEL Codes: D82, H23, Z28

∗We thank Mohammad Akbarpour, Susan Athey, László Csató, Edward Lazear, Michael Ostrovsky,
Brad Ross, Andrzej Skrzypacz and Bob Wilson for helpful comments and discussions, as well as Con-
nor King, Daryl Morey, Mike Zarren and participants at the MIT Sloan Sports Analytics Conference
2020 and the Stanford Economic Theory Workshop. Code for the analysis in the paper is available at
http://github.com/evanmunro/draft-policy. A previous version of the paper was circulated under the title
An Incentive-Compatible Draft Allocation Mechanism.

†Graduate School of Business, Stanford University. 655 Knight Way, Stanford CA 94305. Banchio:
mbanchio@stanford.edu, Munro: munro@stanford.edu

1



1 Introduction
Numerous private and public institutions help their members in need with targeted
aid. The business schools of Stanford and Harvard University, for example, award
financial aid packages to incoming students with the lowest income and assets. When
a new container ship arrives at West Coast ports, the International Longshore and
Warehouse Union assigns priority to workers with the lowest number of hours worked
in the current quarter.1 In the annual draft lottery, the NHL, NBA and the NFL assign
the most coveted newly eligible players with a higher probability to the teams with the
worst win records in the previous year. In the curious West Point “Goat” tradition,
the lowest-ranking graduating cadet receives a cash prize and a rousing ovation.2 In
all of these examples, individuals are targeted based on performance measures.

However, targeting aid based on performance measures introduces perverse incen-
tives to intentionally under-perform in order to qualify for aid. In the NHL and
the NBA, the practice of teams intentionally losing near the end of a season in or-
der to receive a better draft pick is colloquially known as ‘tanking’. This strategy is
frequently and passionately discussed in sports media and has been empirically doc-
umented in the NHL by Fornwagner (2019) and in the NBA by Taylor and Trogdon
(2002). Tanking-like strategies appear outside of sports leagues as well. For example,
college consultants have devised strategies for sheltering assets on the Free Application
for Federal Student Aid (FAFSA), including taking unpaid leaves of absence and pur-
chasing non-reportable luxury goods.3 Reyes (2008) provides empirical evidence that
eligibility criteria for need-based financial aid introduces incentives that substantially
reduce family savings. Major Rittenburg, a Class of 1973 West Point graduate, reports
that “The Goat candidates had to know the material perfectly so they would know
exactly how many questions to answer wrong... not failing, but barely passing and still
below their competitors.”4

The negative effect of tanking is two-fold: not only does it reduce the overall effort
exerted by the members of an institution, it also hurts the effectiveness of targeting.
Poor performance is no longer a good signal of need in the presence of incentives to
tank. Institutions have devoted significant resources to adjusting eligibility criteria
in attempt to improve targeting and minimize perverse incentives. In addition to the
FAFSA, many private universities collect a wider set of information from parents using
the CSS Profile, including business income and medical expenses, to reduce incentives
to engage in asset sheltering strategies. The NHL and NBA have changed the design

1See Cole (2018)
2https://www.wsj.com/articles/SB10001424127887324352004578131262893535452
3See, for example https://finaid.org/financial-aid-applications/maximize/ and https://www.

cappex.com/articles/money/how-to-shelter-assets-on-the-fafsa
4https://www.west-point.org/family/bicent/goat.html
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of the draft lottery repeatedly in the last 30 years in order to address concerns about
competitive balance and tanking, sometimes increasing the probability with which the
lowest-ranked teams are allocated the top draft pick, and sometimes decreasing it.
Targeting aid without encouraging tanking is a challenging problem.

In this paper, we study formally how a planner, such as a manager of an institution,
can target aid based on relative performance criteria without introducing incentives
to under-perform. We first build a framework that captures the incentives introduced
by aid targeting mechanisms. We choose to model this problem as a contest between
multiple agents.5 The tournament consists of several periods, where in each period
agents engage in competition with a certain probability of success. Successes and
failures are recorded in a cumulative score. The probability of success is affected
by the agent’s choice, which is whether or not to exert effort. Agents maximize the
value of the prizes that they expect to receive at the conclusion of the tournament,
and prizes are allocated based on the cumulative scores. The key difference in this
paper compared to a classic model of incentives in tournaments (see Lazear and Rosen
(1981) and Rosen (1986)) is that there is a non-monotonic prize structure. While an
exogenously-determined market prize is assigned to the top performers, the planner
decides how to target the bottom-ranked agents with a limited number of aid packages.
This non-monotonicity introduces an endogenous cost of effort in the model. Effort is
costly only when exerting it reduces the agents’ chances of receiving an aid package
but does not sufficiently increase their chances of receiving the market prize.

We model the choice of aid allocation system as a mechanism design problem in
the contest model described. The manager’s objective is to maximize the probability
that agents ranked below a cutoff receive aid, constrained by an incentive-compatibility
condition requiring that agents play the efficient equilibrium, where every agent exerts
effort in each period. Maximizing this objective leads to a choice of mechanism that tar-
gets the lowest-ranked agents without introducing any incentive to reduce effort. The
first question we address is what kind of mechanisms satisfy the incentive-compatibility
constraints. Most existing aid mechanisms based on relative performance use an ex-
post cumulative measure of performance. The NBA determines draft lottery weights
based on final rankings after the season concludes and the FAFSA collects asset in-
formation at the date of application. Our first result is that any ex-post mechanism
based on final rankings that favors the lowest-ranked agents provides incentives to
shirk in some possible history. This negative result suggests we should look at mech-

5Aid is often allocated to the neediest members of an institution on a fixed budget. For this reason,
we analyze the design of an optimal targeting rule in a contest model. However, the contest structure
is fairly general: it captures single-person decision problems where an agent qualifies for aid based on a
static threshold, as in many government programs. See Appendix A.3 for details: in this sense, the model
accommodates both relative and absolute performance evaluation.
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anisms that adapt the allocation probabilities over time based on the performance
history of each agent. In our applications, this implies that using data on historical
performance can improve targeting while reducing incentives to tank. In line with our
insight, rather than taking a snapshot of information, the Stanford Graduate School
of Business recently began using three years of asset and income information from in-
coming MBA students to determine need-based aid packages, which reduce incentives
to shelter assets immediately before enrolling in the program.

The challenge to address is how to adjust the allocation probabilities dynamically
in an optimal and computationally feasible way. We show that the designer’s problem
is a convex program with an infeasible number of constraints. In Section 3.2 we address
the computational issues by first solving a relaxed version of the designer’s problem
that does not include the IC constraints. A solution to this relaxed problem is a
simple dynamic mechanism that in each period targets agents based on the conditional
probability they rank below the aid cutoff. We then address the incentive constraints
separately by freezing targeting probabilities at an endogenous stopping time. We refer
to this incentive compatible targeting rule as T-IC. We show this process is constrained-
optimal, since it minimizes the designer objective conditional on all information up to
the stopping time. Furthermore, this conditional objective monotonically decreases
with additional information, which guarantees that our rule outperforms any policy
that leverages less information. We show that by leveraging the dynamics of the
tournament it is possible to target aid to the worst performers without introducing
any incentives to shirk.

Though computing the globally optimal rule is not computationally feasible in
general, in Section 3.3 we set up a toy model with three contestants and six periods
where it is possible to enumerate all 218 possible histories. In this simulation, it is
possible to compute the value of the globally optimal rule as the solution to a convex
program and compare it with T-IC. We are then able to provide some interesting
comparative statics. For example, we show that, as the ratio of the value of the market
prize to that of the aid package increases, the value of T-IC closely approximates the
value of the globally optimal rule. In addition, we highlight how the dynamic nature of
incentives in this problem constrains the optimal rules. We show that in the absence
of incentive issues, an optimal allocation mechanism would weight performance in
periods closer to the end of a tournament higher than those earlier in the tournament,
since performance in those periods is most relevant in determining final rankings.
However, earlier in the tournament incentives are more slack since final rankings are
uncertain and agents are still competing for the top market prizes. Towards the end
of the tournament, incentives are more likely to bind as some agents who have lost
repeatedly in earlier stages of the tournament have given up on pursuing a market
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prize and may compete for an aid package instead. As a result, when incentives are
taken into account, the weights that both the optimal mechanism and T-IC place on
each period are hump-shaped. Both allocation mechanisms place higher weights on
intermediate periods where performance is increasingly indicative of final rankings but
incentive constraints are still slack enough to allow for meaningful adjustment of the
allocation probabilities.

We then describe in Section 4 how T-IC applies to the practical setting of designing
the NBA draft lottery. For the NBA there are detailed data available on the histories
of every season, which allows a quantitative analysis of our mechanism. From 1985-
1989 the NBA used an ex-post uniform lottery which, according to our first theorem,
was incentive-compatible. As a result, we can estimate the counterfactual performance
of T-IC in those years without observing effort. We simulate how T-IC would have
adjusted draft probabilities over time up until a season-specific stopping time; we show
that our proposed mechanism, while stopping well in advance of the end of the season,
targets the lowest-ranked team with a 39% average probability, compared to 14% from
1985-1988 and 11% in 1989 for the uniform lottery. This gain in targeting does not
trade off any violation in incentive compatibility for any team.

2 Literature Review
A central problem in economics is understanding whether it is possible to achieve
some degree of redistribution without affecting individuals’ incentives to exert effort.
Results from Mirrlees (1971) and Epple and Romer (1991) indicate that the optimal
level of redistribution is limited by the distortions it places on incentives. Redistribu-
tive policies, however, are essential to reduce persistence in inequality, as described
theoretically by Mookherjee and Ray (2003).

There is an extensive literature on improving targeting of social programs while
minimizing perverse incentive effects, but to our knowledge these issues have not been
analyzed in a tournament setting. Kanbur (1987) suggests that welfare targeting based
on observed characteristics introduces incentives to change behavior, as in our setting
where the characteristics are a performance score. Of the various directions taken by
the literature, one of the most popular is tagging, see Akerlof (1978) and Allcott et al.
(2015), which relies on characteristics that are not manipulable. Another direction is
deterrence or complexity-based mechanisms, as in Besley and Coate (1992) and Kleven
and Kopczuk (2011). Our paper focuses on how dynamic information can improve
targeting, without adding complexity or deterrence to the application process.

There is a wide literature studying various incentive problems in tournaments,
beginning with work from Lazear and Rosen (1981) and Rosen (1986) who studied
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efficient prize structures in tournaments as optimal labor contracts. Dagaev and Sonin
(2018) study incentive compatibility violations in tournaments with multiple qualifica-
tion rounds. Brown (2011) shows that inequality in ability can result in effort reduction
in a tournament setting and Brown and Minor (2014) show how dynamic strategies in
multiple stage competitions affect the probability the strongest player wins.

In sports economics, there is a body of literature proposing draft allocation mech-
anisms but most of it lacks a theoretical model that explicitly describes the league
objective and team decision-making. Gold (2010) proposes allocating the top pick to
the team with the highest number of wins after elimination from the playoffs, while
Lenten (2016) and Lenten et al. (2018) suggest the team that is eliminated first from
playoff contention should receive the top pick. Under our framework, neither rule is
fully incentive compatible. Concurrent work from Kazachkov and Vardi (2020) sets
up a theoretical model of a tournament and also suggest the NBA draft would be
improved by running a lottery at a stopping time earlier in the tournament. Rather
than designing a fully incentive-compatible mechanism, they computationally illustrate
the trade-off between the prevalence of tanking and how much the draft benefits the
lowest-ranked team in expectation.

It is possible to describe the optimal incentive-compatible allocation mechanism as
a solution to a simple optimization problem. However, it is impossible to compute that
solution for even reasonably sized settings, so we propose a constrained-optimal but
computationally feasible mechanism instead. As described in Akbarpour et al. (2020),
there are many other mechanism design settings where approximate solutions are nec-
essary due to computational limits, such as the optimal packing of cargo (Dantzig,
1957), radio spectrum allocation with interference constraints (Leyton-Brown et al.,
2017), and computing the efficient allocation for combinatorial auctions (Lehmann et
al., 2002).

3 Designing a Targeting Mechanism

3.1 Designer and Agent Objectives
A tournament is made up of a total of T periods. There are n agents in the tournament.
Each agent accumulates a performance metric, which we call a score. Examples of a
score include cumulative assets in the financial setting or cumulative victories in the
sports setting. In every period agents have an opportunity to increase their score. They
choose how much effort eit ∈ {0, 1} to exert, knowing that it affects the probability of
increasing their score. In every period, a random vector of outcomes Ot ∈ Ot ⊆ {0, 1}n
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is realized according to a distribution µt.6 The outcome Oit = 1 indicates agent i

successfully completed her task in period t. We define the score of agent i as the
integer Sit = Si,t−1 + Oit. We allow for heterogeneous initial scores Si0 ≥ 0 to model
inherited differences. A t-history is a sequence St =

{
Ss

}
s≤t

where Ss is the vector
of scores at time s. A full history is a T -history. The set of all histories is denoted
by S. A tournament is a tuple (n, T, S0, {µt, Ot}t=1,...,T ). Finally, define Wit as the
random vector in Ot with distribution Pr(Wit) = Pr(Ot|Oit = 1). Wit records a
successful period for agent i and stochastic outcomes for every other agent. Similarly,
the random vector Lit is distributed according to Pr(Lit) = Pr(Ot|Oit = 0).

We assume that there is a market prize with value πV
i for agent i, which is allocated

to the best v∗ performers. There are also d∗ aid packages with value πD
i , and the

planner would like to allocate them to the d∗ lowest-ranked performers. We assume
0 < πD

i ≤ πV
i and that the incentive problem is non-trivial, so v∗ + d∗ < n.7 This

generates a trade-off for the planner, as the first-best prize structure is non-monotonic:
agents ranked between v∗ and n − d∗ receive no prize, while agents above v∗ or below
n − d∗ do. The assumption that market prizes are out of the control of the planner
reflect exogenously-determined rewards to good performance. In the NBA setting, v∗

is the cutoff for making the playoffs and πV
i represents the expected additional revenue

from the playoffs that a team receives, in terms of media exposure and ticket sales. Aid
represents the draft picks, whose value can be interpreted as the increase in long-term
expected revenue that a team expects to receive from drafting the top eligible player.
In the financial aid setting, aid packages may include tuition reductions as well as
housing and dining discounts given based on demonstrated need.

The agent succeeds at a task with probability pit(et),8 defined by

pit(et) = Pr
(
Oit = 1|et

)
= Pr

(
Wit|et

)
We assume that the probability is non-decreasing in eit. If the probability pit is constant
0 across effort levels, agent i doesn’t face any task during that period.9 Additionally,
we will assume that an agent’s effort affects other agents’ success probabilities only
through her own outcome.10 The ranking of an agent i is defined as follows, where the

6Formally, let Ot ⊆ {0, 1}n be a measurable space for every t. The space of measures over Ot is denoted
P (Ot). The distribution of Ot is µt(et)(Ot), where µt : {0, 1}n → P (Ot) is a functional mapping vectors of
effort choices to probability measures over the set of outcomes.

7In settings where it is unrealistic to assume that agent-specific values for the prizes are common knowl-
edge, we can instead assume that a lower bound π̄V on the value of each market prize and an upper bound
π̄D on the value of each aid package is common knowledge.

8The dependence of pit on the identity of the agent reflects anticipated differences in performance.
9See Appendix A.3 for a discussion of contests with inert agents.

10This assumption is weaker than unconditional independence and is satisfied by every environment we
describe.

7



agent with the maximum score has rank 1:

ri(St) = 1 +
∑

j∈I\i

1(St
j > St

i )

Ties are broken at random. Denote by Rj(St) the identity of the agent ranked j,
that is, Rj(St) = i if and only if ri(St) = j. We denote the probability of receiving
the market prize in the tournament for agent i given a history St as qi(St). These
probabilities can be defined recursively:

• qi(ST ) = 1(ri(ST ) ≤ v∗)

• qi(St−1) = Et−1[qi(St−1 + Ot)] for every t ≤ T

where the subscript t − 1 represents the conditional expectation on information St−1.
Consider the set Vd∗ of all the vectors v ∈ {0, 1}n such that there are exactly d∗

coordinates with vj = 1. We define d∗∆n as the affine n-simplex over a fixed maximal
subset of linearly independent vectors of Vd∗ . We consider a targeting mechanism of
the form:

y : S → d∗∆n

where yi(St) represents the probability that agent i receives the aid package given the
history up to period t. The mechanism is restricted in the following ways. Since yi(St)
represents the expected allocation probabilities conditional on information up to time
t, the probabilities at time t must be dynamically consistent with the probabilities
conditional on information up to time t − 1:

yi(St−1) = Et−1[yi(St−1 + Ot)] for every i, t ≤ T (DC)

Moreover, the lottery probabilities at any history need to add up to d∗:

n∑
i=1

yi(St) = d∗ ∀St (PROB)

A targeting allocation mechanism satisfying DC and PROB is feasible, and the space
of feasible mechanisms is Y. A simple linear algebra argument shows that any feasible
targeting mechanism induces a lottery over deterministic aid allocations, see Lemma
6 in Appendix A.2.

Each agent makes a single strategic choice in each period, which is how much
effort to exert. Besides literal interpretations of effort, the agent’s action may reflect a
savings commitment, or any other agent’s choice that affects the expected score. Since
in what follows we assume no explicit cost of effort, the efficient action for every agent
is to exert effort in every period. We are interested in mechanisms that implement the
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efficient equilibrium.

Agent Objective. For a given targeting mechanism, in period t agent i chooses an
effort level to maximize her expected payoff given the results so far. Following the one-
shot deviation principle and applying the tower property of conditional expectations,
agent i in period t in such an equilibrium faces the following objective.

Optimization Problem 1.

max
eit

pit(et)
(
Et−1[qi(St−1 + Wit)]πV

i + Et−1[yi(St−1 + Wit)]πD
i

)
(1)

+(1 − pit(et))
(
Et−1[qi(St−1 + Lit)]πV

i + Et−1[yi(St−1 + Lit)]πD
i

)
Notice that this optimization is relevant only when the probability is not constant

across effort levels. When an agent is indifferent between effort levels, we assume that
she exerts maximum effort.11 Since probability is assumed non-decreasing in effort,
maximizing the agent’s objective we derive a necessary condition for efficiency:

Incentive Condition (IC).

Et−1
[
qi(St−1 + Wit) − qi(St−1 + Lit)

]πV
i

πD
i

≥

Et−1
[
yi(St−1 + Lit) − yi(St−1 + Wit)

]
(IC(i,t))

If this inequality is satisfied, it is optimal for the agent to exert maximum effort.
(IC) has a clear interpretation. If the increase in the probability of receiving aid when
unsuccessful is less than the decrease in the probability of receiving the market prize,
scaled by the ratio of the prizes’ values, then the agent will exert effort. Notice how
in our model without an explicit cost of effort, an implicit cost arises as a result of
allocation rules targeting the worst performers. The non-monotonicity of the reward
structure makes the agent’s problem non-trivial. The results do not hinge on this
cost-of-effort assumption, as discussed in Appendix A.1.

The common thread in our applications is that a planner would like to target aid
to the lowest-ranked contestants. For example, the U.S. sports leagues have indicated
that maximizing competitiveness in the league over repeated tournaments requires
allocating the valuable first round draft picks to the lowest ranked teams. Universities
promote long-run equality of opportunity through aid policies. Our simple planner
minimization reflects these observations.

11Successfully completing a task should be preferred to losing in the short-term, in the absence of long
term incentives. For example, in the NBA, teams receive a benefit in terms of fan engagement from winning
a game and would likely exert effort as a result of this, even in the absence of other external incentives.
Parents would likely choose to accumulate assets absent incentives to lower their bank account balance.
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Planner Objective. The first-best policy would allocate the aid packages to the
bottom ranked agents at the end of the tournament. Since in general the first-best
policy will not be incentive compatible, we focus on finding an optimal second-best
policy. The planner’s objective is to find an allocation rule y that satisfies IC and
minimizes the mean squared deviation from the first-best mechanism. Let the cutoff
n − d∗ be denoted by k∗: the planners aims to target agents whose rank falls below k∗.

Optimization Problem 2.

min
y∈Y

E
[

n∑
i=1

(
1(ri(ST ) > k∗) − yi(ST )

)2
]

(2)

subject to ∀i, t, k, S

Et−1
[
qi(St−1 + Wit) − qi(St−1 + Lit)

]πV
i

πD
i

≥ Et−1
[
yi(St−1 + Lit) − yi(St−1 + Wit)

]
(IC(i,t))

We begin by examining allocation mechanisms that rely on final rankings only,
disregarding the full history of performance. We first restrict our attention to tourna-
ments where the implicit cost of effort affects agents’ choices.

Definition 1. A tournament (n, T, S0, {µt, Ot}t) is non-degenerate if for every l >

m ≥ v∗ there exists an agent i and a history St−1 such that

Et−1
[
qi(St−1 + Wit) − qi(St−1 + Lit)

]
= 0 (3)

but
Et−1

[
1(ri(St−1 + Lit) > l) − 1(ri(St−1 + Wit) > l)

]
>

Et−1
[
1(ri(St−1 + Lit) > m) − 1(ri(St−1 + Wit) > m)

]
≥ 0

(4)

Non-degenerate tournaments require the existence of some histories where agents
cannot increase their probability of receiving the market prize but can decrease their
expected ranking.

Our first result shows that any incentive compatible rule that targets lower-ranked
agents cannot depend only on the final rankings. It provides a rationale for turning
our attention to mechanisms that account for the dynamics of the tournament.

Theorem 1. If a tournament (n, T, S0, {µt, Ot}t) is non-degenerate, the only targeting
mechanism y such that:

1. The mechanism is a function only of an agent’s final ranking ri(ST ),
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2. The mechanism targets lower-ranked agents with a higher probability than higher-
ranked agents. Formally, there exists a l > m ≥ v∗ such that

yRm(ST ) ≤ yRl
(ST )

3. The mechanism satisfies (IC) at every history St ∈ S,

is a uniform lottery, which assigns equal probabilities to every agent i ranked lower
than v∗ .

Proof. Let y be a feasible mechanism satisfying conditions 1 − 3. Under the assump-
tions, there always exists a history St such that such that:

• Agent i’s chances of ranking in the first v∗ positions are constant:

Et−1
[
qi(St−1 + Wit) − qi(St−1 + Lit)

]
= 0

• Agent i’s chances of ranking in the bottom positions can be improved by losing
in period t:

Et−1
[
1(ri(St−1 + Lit) > l) − 1(ri(St−1 + Wit) > l)

]
>

Et−1
[
1(ri(St−1 + Lit) > m) − 1(ri(St−1 + Wit) > m)

]
≥ 0

Then, we have for agent i:

0 =Et−1[qi(St−1 + Wit) − qi(St−1 + Lit)]
πV

i

πD
i

≥

Et−1[yi(St−1 + Lit) − yi(St−1 + Wit)] ≥ 0

where the first inequality is (IC) and the last inequality is condition 2. This chain of
inequalities is satisfied only with equality, making the only rule that satisfies conditions
1 − 3 the uniform lottery over agents ranked lower than v∗.

The theorem shows that independently of how carefully the planner chooses the
targeting lottery, if the lottery favors lower ranked agents, then there will always be
incentives for agents to shirk after they are eliminated from market prize contention.
Theorem 1 provides a compelling reason to turn our attention to the dynamics of
performance.

The planner optimization problem (2) is a convex program. However, solving for
the global optimum is infeasible. Such a calculation would require all possible histories
of a tournament to be enumerated to specify the (IC) constraints and to calculate the
planner objective which is an expectation over all possible histories. For example, in
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a standard NBA season the game tree is of size 2T , where T = 1, 230. We propose
a simple rule that is computationally feasible and provides us with clear intuition.
It satisfies the (IC) constraints through a history-dependent stopping time, so that
incentive compatibility does not affect the adjustment of the weights in periods before
the stopping time. This means that the allocation probabilities can be determined in
each period without enumerating all possible future histories.

3.2 An Incentive-Compatible Targeting Mechanism
Theorem 1 indicates that a lottery based on final rankings that favors the worst agents
will not satisfy (IC). Let us instead turn our attention to dynamic rules, which adjust
the targeting probabilities as the score progresses. We can write a relaxed version of
the planner objective as a dynamic programming problem:

min
y∈Y

Vy(S0) (5)

subject to

Vy(ST ) =
n∑

i=1

(
1(ri(ST ) > k∗) − yi(ST )

)2
∀ST

Vy(St) =E
[
Vy(St+1)|St

]
∀St

Following Bellman’s principle of optimality, if y∗ solves the problem above then its
truncation after a history St is tail-optimal, meaning it solves problem miny∈Y Vy(St)
for every St. This implies that problem (5) is equivalent to a relaxation of problem
(2) disregarding the incentive compatibility condition, and y∗ is the optimal control of
problem (2). Problem (5) may have arbitrarily many solutions, since the intermediate
values of the control do not affect the value of the objective. Because every solution
yields a minimum value of zero, we select one simple minimizer which we know to be
feasible. This solution to the relaxed problem assigns to each agent her conditional
probability of ending the tournament below rank k∗ as her targeting probability. We
call this solution y. We first prove that this is indeed a solution of the relaxed problem:

Lemma 2. The rule y, defined as yi(St) = Pr(ri(ST ) > k∗|St) for all i, t, is a feasible
solution of the unconstrained problem (5).

Proof. To prove feasibility, note that
∑n

i=1 yi(St) =
∑n

i=1 Pr(ri(ST ) < k∗|St) = d∗,
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and by the law of iterated expectations

yi(St) = Pr(ri(ST ) > k∗|St) = E[1(ri(ST ) > k∗)|St] =

= E
[
E[1(ri(ST ) > k∗)|St+1]

∣∣∣∣St
]

= E
[
yi(St+1)

∣∣∣∣St
]

which proves dynamic consistency. To see that y is optimal, it is sufficient to notice
that Pr(ri(ST ) > k∗ |ST ) = 1(ri(ST ) > k∗).

The rule y is simple and intuitive: it dynamically adjusts the lottery odds as the
tournament progresses. When agents are equal, the probability of receiving aid before
the tournament begins is d∗

n . If instead there is an initial level of inequality, the
ex-ante probability is higher for disadvantaged agents. As successes and failures are
recorded in each period, an agent’s probability of receiving aid adjusts based on their
updated conditional probability of ending up ranked below k∗. For example, when an
agent fails in multiple periods early in the tournament, the probability of ranking low
increases and the planner increases their targeting probability accordingly. However,
this rule may not be incentive compatible. Intuitively, we expect (IC) to hold earlier in
the tournament, when incentive constraints are slack since scores are equal. We know
that it will bind towards the end, when competition for the market prize is diminished
due to accumulated inequality in scores. We follow this intuition and propose an
incentive compatible targeting rule T-IC, denoted by yT −IC , that satisfies incentive
compatibility and still targets the bottom of the rank distribution. The rule yT −IC

coincides with the global optimum y until the incentive compatibility condition starts
to bind. We denote the first period where (IC) binds along a particular history ST as
t∗(ST ). Along any history following St∗ the value of yT −IC is constant. This ensures
that (IC) is satisfied in every period.

Formally, we define the stopping time t∗ as

t∗(St) = min
{

s ≤ t : ∃i ∈ I s. t. (IC)i,s is violated under rule y
}

When there is no such s ≤ t, we let t∗(St) = t. The targeting policy yT −IC then takes
the following form:

yT −IC
i (St) =

Pr(ri(ST ) > k∗ |St) if t ≤ t∗(St)

Pr(ri(ST ) > k∗ |St∗) if t > t∗(St)

Lemma 3. The rule yT −IC is feasible and incentive compatible.

Proof. As in Lemma 2, the feasibility constraint (PROB) is satisfied by definition. To
see that dynamic consistency is satisfied, note that:
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• in period t ≤ t∗ we can apply the same reasoning as in Lemma 2

• in period t > t∗ the targeting probabilities are constant, hence

yT −IC
i (St) = E[yT −IC

i (St+1)|St]

To show that (IC) is satisfied, we proceed by contradiction. Suppose that some (IC)(i,t)

was violated. This is equivalent to

Et−1
[
qi(St−1 + Wit) − qi(St−1 + Lit)

]
πV

i

< Et−1
[
yi(St−1 + Lit) − yi(St−1 + Wit)

]
πD

i

But T-IC fixed the targeting probabilities at some time s ≤ t. This implies the
RHS is zero, and since the LHS is always weakly positive it cannot be that (IC) was
violated.

By stopping the probability updating process we are able to satisfy incentive com-
patibility in every period, but we can no longer target the lowest-ranked agent in every
history. Nonetheless, the performance of yT −IC has an optimal property.

Theorem 4. The rule yT −IC is optimal among the rules that are constant after period
t∗.12

Proof. We exploit the dynamic programming characterization of the designer’s prob-
lem. Let Zt be the subspace of Y of feasible policies constant after period t, and z a
generic element of Zt. The value of problem (5) for any z is Vz(S0) = E[Vz(St)]. The
period with the relevant minimization is period t: the information arriving afterwards
cannot be incorporated in the control. Then our problem reduces to minimizing the
following:

min
z∈Zt

E
[

n∑
i=1

(
1(ri(ST ) > k∗) − zi(St)

)2∣∣∣∣St

]
(6)

where zi(St) are non-random constants. Relaxing the feasibility constraint, we simply
minimize

min
zi∈R

E
[(
1(ri(ST ) > k∗) − zi

)2∣∣∣∣St
]

for each i = 1, . . . , n. The value of zi that minimizes this conditional average squared
deviation of the random variable 1(ri(ST ) > k∗) is simply the conditional mean of the
random variable,

E[1(ri(ST ) > k∗)|St] = Pr(ri(ST ) > k∗|St) = yi(St)
12We omit the dependence of t∗ on the history for ease of notation
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Therefore, we can construct a z ∈ Zt that solves minimization (6):

zi(Ss) =

yi(Ss) if s ≤ t

yi(St) if s > t

Setting t = t∗ proves the Theorem’s claim.

From the proof it transpires another property of the T-IC policy. Under T-IC, in
each period until t∗, the value of the designer’s objective monotonically decreases.

Corollary 5. For any s ≤ t,

min
z∈Zt

Vz(S0) ≤ min
z∈Zs

Vz(S0)

Proof. The claim follows from the following observation: a policy that is constant
after period t is also constant after period t + 1. Therefore the sets Zt are nested:
Z1 ⊆ Z2 ⊆ · · · ⊆ ZT = Y.

Any incentive compatible rule must depend at least partially on the history of scores
in the tournament, as shown in Theorem 1. This property of incentive compatible
mechanisms highlights the complexity of solving the planner’s problem. The rule we
propose takes care of the complex restrictions by decoupling the incentives from the
optimality of the rule. We address the optimality requirements by solving a relaxed
program, and we take care of incentives separately by means of the stopping time t∗.
This separation is the key to the computational feasibility of the method, as incentives
only affect the stopping time and not the adjustment of the weights. In the globally
optimal solution computed in Section 3.3 for a small tournament, the incentives affect
both the stopping time and the weights and as a result the optimal weights require
enumerating all possible histories of the tournament.

We provide some intuition on why this mechanism is a good approximation to the
optimum. With no information, if we didn’t take into account the record from any
periods, then the policy that would minimize Optimization Problem 2 in expectation
would be an ex-ante lottery over all agents. Conditioning the allocation mechanism
on additional outcomes progressively decreases the value of the objective function.
If we ignored the restrictions posed by (IC), we could condition on the full history
ST . Without a stopping time, T-IC would allocate aid to the bottom d∗ agents with
probability 1, as shown in Lemma 2. This yields the minimum possible value of the
planner objective. However, the incentive compatibility requirements places us strictly
in between the no information case and the full information case; we minimize problem
(2) conditional on as much information as we can take into account without violating
(IC). The first binding incentive compatibility constraint determines how far from
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the optimum our solution will be. One drawback is that for certain histories where
incentive constraints bind early for a contestant in the tournament, the stopping time
will occur quite early. If this is the case, the approximate objective that T-IC satisfies,
which is conditional on a limited history up to the stopping time, may be far from the
true objective.

We next provide a small simulation showing how T-IC compares to the globally
optimal, ex-ante, and ex-post IC rules, by explicitly computing the stopping time t∗

for every history.

3.3 Simulation
Consider a simple setting with 3 agents, where agents have equal ability, the top agent
receives the market prize, and there is only one aid package available. This is the
smallest number of agents such that there are incentive issues.

We simulate a tournament with n = 3 agents and T = 6 periods. This simulation
can be considered a toy model of the financial aid setting. For each of 6 years, all three
agents choose whether or not to be thrifty and try to save a discrete sum. If they do
attempt to save, they are successful with a 50% probability.13 The goal is to allocate
an aid package to the agent with the lowest savings at the end of 6 years, without
introducing incentives to intentionally reduce savings in order to receive aid. It is
feasible, though computationally intensive14, to enumerate all possible 218 outcomes
of the tournament and calculate the globally optimal incentive-compatible mechanism
as the solution to the convex program in Optimization Problem 2. We report the de-
signer’s value averaged over all possible histories for four different incentive-compatible
mechanisms:

1. Ex-post uniform lottery: a uniform lottery over all agents that do not receive the
market prize.

2. Ex-ante uniform lottery: a uniform lottery over all agents.

3. The globally optimal rule

4. T-IC, the approximately optimal rule

All mechanisms are incentive compatible as long as π̄V

π̄D ≥ 1.
We proved that our allocation rule is constrained-optimal; it maximizes the planner

objective conditional on results only up to a dynamically-determined stopping time.
How late this stopping time is realized depends on the assumed lower bound π̄V

π̄D for
any agent. Figure 1a shows how the value of the designer objective varies with π̄V

π̄D .

13Failing to save can be interpreted as a transient negative income shock.
14We use the Julia optimization package JuMP and the commercial solver Mosek to perform this opti-

mization
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The ex-ante uniform rule gives the aid package with expected probability 33% to the
lowest-ranked agent. The ex-post uniform rule gives aid with expected probability
50% to the lowest-ranked agent. For low values of π̄V

π̄D , T-IC does not do much better
than the uniform rules. The incentive constraints bind early in the tournament, so the
allocation probabilities cannot be adjusted. However, as π̄V

π̄D increases, the designer
objective decreases rapidly for T-IC and decreases slowly for the globally optimal rule.
Additionally, both rules converge to a constant value as π̄V

π̄D increases. The value of
the planner objective under the first-best policy is 0. As expected from Theorem
1, neither the globally nor the approximately optimal rule can ever achieve the first
best, no matter how large π̄V

π̄D is. The globally optimal rule converges to a value
of approximately 0.038 while T-IC converges to a value of approximately 0.067, so
approximates well the global optimum compared to the uniform incentive compatible
rules. The performance of T-IC is computationally feasible as T increases, whereas
the globally optimal rule is not, since it requires enumerating all possible histories.

(a) Designer Objective, B = πV

πD
(b) Average Aid Allocation Probability Change

by Period

Figure 1: Comparing Alternative Rules in Simulations

Figure 1b provides some intuition on what drives the good performance of the
approximately optimal and globally optimal rule, and the differences between them.
Figure 1b shows the average absolute value of the change in aid allocation probability
between period t and t − 1, averaged over all histories and agents, when we assume
that π̄V

π̄D = 10. In the the absence of incentive constraints the weight placed on each
period is higher later in the tournament, when it is increasingly clear who will have
the lowest savings at the end of 6 years. However, when constraints are added, both
T-IC and the optimal rule show a turning point where they place decreasing weights
on later periods. In earlier periods of the tournament, incentive compatibility is more
likely to hold, because every agent is still in contention for the market prize. In later
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periods, incentive compatibility constraints are tighter since certain agents may have
failed to save repeatedly in the first few periods and have given up competing for the
top prize.

T-IC follows the optimal rule without IC constraints for the first three periods.
However, T-IC freezes the aid allocation probabilities for all agents once incentives for
a single agent have been violated. As a result, after period 3 the weight that T-IC places
on each period decreases. The globally optimal rule enumerates all possible histories
of the tournament and can take into account the IC constraints when adjusting aid
allocation probabilities. As a result, the optimal rule adjusts less in earlier periods,
but can place a higher weight on later periods compared to T-IC. The benefit of
this optimal adjustment process is quite small, since the two mechanisms have close
performance as π̄V

π̄D increases.
From these simulations we have indications that, for reasonable values of π̄V

π̄D , the
constrained-optimal solution given by T-IC is close to the globally optimal solution
and substantially better than the uniform rules.

4 Improving the NBA Draft Lottery
In the sports setting the dynamic performance data and predictive modeling necessary
for estimating T-IC directly are publicly available. After providing some background
on the history of the draft allocation lottery we estimate the performance of T-IC
on empirical data on the NBA from 1985-1989. The NBA tournament occurs from
October to April. Though the number of teams have changed over the years, there are
currently thirty teams competing, divided in two conferences. Each team plays eighty-
two games in a single regular season. At the end of the regular season, the teams are
ranked by the number of wins. The top eight teams in each of the two conferences
advance to the playoffs. The playoffs are an elimination tournament and the winner
takes the championship. The remaining teams participate in the draft lottery for the
first draft pick. In the notation and language of our model, the tournament is a season
and agents are teams. πV

i is the value of making the playoffs for the top v∗ = 16 teams,
which we assume has lower bound π̄V . π̄D is the upper bound on the value of the first
draft pick to any given team, which is targeted to the bottom-ranked team, so d∗ = 1.

During the draft, teams select players who are eligible and wish to join the league.
An eligible player is at least nineteen years old and one year removed from their high
school graduation date. The teams pick sequentially, in a prescribed ordering, the
player they value the most out of the remaining pool of eligible draftees. In the NBA,
the first four picks in the ordering are allocated by lottery. The remaining picks are
based on reverse rank. In this empirical example, we focus on the problem of allocating
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the first pick, which is the most valuable, but our framework extends to the allocation
of multiple picks to the teams who do not make the playoffs. Before 1985, the first draft
pick was allocated based on a coin flip between the two conference losers. In response
to accusations that teams were intentionally losing in response to this system, the
league switched to a uniform lottery over all non-playoff teams from 1985 to 1989.
Due to concerns that the uniform lottery did not favor the worst teams, the league
switched to a weighted lottery system starting in 1990. Table 1 describes the draft
lotteries by rank from 1990-2019. The lottery has been changed frequently in response
to complaints about tanking or competitive balance in the league, so the probability
that the lowest-ranked team receives the pick has ranged from 14% to 25%. Theorem
1 explains why the league has changed the system so often without finding a lottery
that is satisfactory; it is not possible to have an ex-post incentive compatible lottery
that also favors the worst-ranked teams.

Rank 2019 - 2010 - 2018 2005 - 2009 1996 - 2004 1994 1990 - 1993
30 14.0 25.0 25.0
29 14.0 19.9 17.8 22.5
28 14.0 15.6 17.7 22.5
27 12.5 11.9 11.9 15.7 25.0 16.7
26 10.5 8.8 7.6 12.0 16.4 15.2
25 9.0 6.3 7.5 8.9 16.4 13.6
24 7.5 4.3 4.3 6.4 16.3 12.1
23 6.0 2.8 2.8 4.4 9.4 10.6
22 4.5 1.7 1.7 2.9 6.6 9.1
21 3.0 1.1 1.0 1.5 4.4 7.6
20 2.0 0.8 0.9 1.4 2.7 6.1
19 1.0 0.7 0.7 0.7 1.5 4.6
18 1.5 0.6 0.6 0.6 0.8 3.0
17 0.5 0.5 0.5 0.5 0.5 1.5

Table 1: Draft Lottery Probabilities for the First Draft Pick, NBA

When estimating our model on this data, one complication arises: we do not observe
effort exerted by teams. We need to account for the changes in teams’ effort choices
arising from the alternate incentives for our counterfactual estimate to be valid. We
can address this issue by exploiting specific institutional details of the draft lottery.
Between 1985 and 1989, when the NBA had a uniform lottery system, teams did not
have an incentive to intentionally lose games. According to our model, teams played
the efficient equilibrium where no one had an incentive to reduce their effort. Since our
rule also operates in an efficient equilibrium, we can directly estimate the performance
of T-IC on the seasons from 1985 to 1989. However, we cannot use more recent years for
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this counterfactual exercise. Since the current NBA lottery incentivizes tanking, team
exertion of effort would have changed under our rule and expected final rankings would
be different. For each of the years from 1985-1989, in order to calculate the evolution
of the draft probabilities up until the stopping time t∗ as well as the stopping time
itself, we need to calculate the following quantities for each game played in the season:

1. In order to adjust yi(St): The probability any given team will be ranked last
conditional on their record after each game t = 1, . . . , t∗:

Pr(ri(ST ) = n |St)

This probability is approximated by simulating the rest of the season, based on
the simplifying assumption teams have equal ability, so win a game with 50%
probability15.

2. In order to determine the stopping time t∗: the incentives to win for each of the
two teams that plays in every game t. This requires simulating the rest of the
season for each game conditional on the results so far, assuming team i wins and
assuming team i loses. This approximates the changes in the teams’ probabilities
of ending up ranked last and their probabilities of making the playoffs conditional
on winning versus losing, which determines their incentives to exert effort in our
model. We also assume for the purposes of determining the stopping time that
π̄V

π̄D = 10.

We calculate the draft probabilities based on our incentive-compatible rule for every
season from 1985-1989 and then examine the results from 1987 more closely, when
there were 23 teams in the NBA. For these five years, we assign the draft to the
lowest-ranked team with a 38.6% probability on average. This is a large increase over
the incentive-compatible ex-post uniform lottery, which gives the lowest-ranked team
a 14% probability from 1985-1988 and an 11% probability in 1989, when the league
was expanded. The shortest stopping time is 353 games in 1989 and the longest is 527
games in 1985, over a total of roughly 1000 games per season. On average, the draft
probabilities are adjusted until 45% of the season has occurred.

Table 2 shows the final draft probabilities for T-IC in 1987 compared to the uniform
lottery in place at the time. Teams are ordered by their inverse final ranking. The
lowest-ranked team, the L.A. Clippers, receives the pick with a 59% probability. 88%
of the probability of receiving the first draft pick is concentrated among the four
teams at the bottom of the final ranking. It is worth noting that probabilities are not

15It is possible to replace this simple simulation with a more sophisticated forecast model. For example,
the website FiveThirtyEight uses a version of the chess scoring system ELO to calculate win probabilities
and forecast the results of the remaining games in the NBA season.
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Rank Team Wins NBA Lottery T-IC Lottery
23 Los Angeles Clippers 12 14% 59.0%
22 New Jersey Nets 24 14% 5.1%
21 New York Knicks 24 14% 6.5%
20 San Antonio Spurs 28 14% 17.4%
19 Sacramento Kings 29 14% 7.4%
18 Cleveland Cavaliers 31 14% 0.9%
17 Phoenix Suns 36 14% 0.7%

< 17 Playoff Teams N/A 0% 3.0%

Table 2: Allocation Policy from 1987 Season, Stopping Time at 371st Game

necessarily always increasing as rank decreases; for example, the Spurs have a higher
draft probability than the lower-ranked Knicks. This is because at the stopping time,
the Spurs had a worse ranking than the Knicks, but improved their record by the end
of the season. Another potential drawback of the mechanism is that depending on
the stopping time, it can assign a small probability to teams who marginally make
the playoffs. In 1987, however, there is less than 4% total probability that any playoff
team also gets the first draft pick.

Figure 2 shows how the probabilities were adjusted over the first 371 games for
the Clippers, the Nets, and the Knicks, who were the worst 3 teams at the end of the
season. Up until game 300, each had a similar win record, so each had a roughly equal
probability of ending up last in the season. However, after game 300, the Clippers begin
a lengthy losing streak; at first, the draft odds continue to adjust based on the rapidly
increasing probability that the Clippers end up ranked last in the season. Early in the
season, there are still incentives for the Clippers to win since there is still a chance
they make the playoffs. After enough games have passed, our model indicates that the
Clippers are increasingly certain that they will not make the playoffs, and incentives
to lose increase enough that the draft probabilities are frozen after game 371.

From 1985-1989, T-IC assigns the first draft pick with an average probability that
is over 20 percentage points higher than the uniform lottery, while maintaining in-
centive compatibility. There are significant practical benefits to implementing a draft
mechanism that is dependent not only on the ex-post cumulative total of wins and
losses, but also when those wins and losses occur.

5 Conclusion
We document various settings with relative performance where the planner is inter-
ested in assigning aid to under-performing agents. We prove that in a dynamic model
with multiple choices of effort, while no ex-post re-distributive policy can be incentive
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Figure 2: Dynamics of T-IC for the 1987 season with πV

πD = 10

compatible, it is possible to target individuals that are likely to be ranked lower at
the end of the tournament by adjusting allocation probabilities over time, up until a
stopping time. The stopping time is dynamically determined in each tournament to
ensure that the rule is incentive compatible in every possible history of a tournament.
We show in a small simulation that our rule performs nearly as well as the globally
optimal rule, which is the solution to a non-linear program that is not feasible in a
larger, more realistic setting.

Our results have implications for the design of a variety of aid programs. It indicates
that financial aid targeting is best improved by collecting a longer history of a simple
set of financial metrics, rather than an increasingly complex snapshot of financial
information at application time. As discussed, this sort of change has been recently
made in the Stanford Graduate School of Business in order to reduce incentives to
strategically reduce reportable wealth. In an institutional sports setting, the design
of T-IC directly leads to an improved draft allocation mechanism for the NBA. Their
lottery has been changed repeatedly over time without reaching a satisfactory system
that addresses tanking while still supporting the worst teams in the league. We show
using historical data from the NBA from 1985-1989 that T-IC significantly outperforms
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the league lottery in place at the time without introducing perverse incentives.
Our results apply more generally to the optimal design of eligibility requirements

for aid and social programs, including in models that are not based on tournaments.
As technology and data analysis improves, it is increasingly feasible for institutions
and managers to use historical data about individuals in order to determine eligibility.
We provide insight on how using performance data on an applicant over time can allow
targeting without affecting incentives.
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Appendix A

A.1 Explicit Cost of Effort
In our model the cost of effort arises endogenously as a function of the v-shaped
prize structure. However, effort could be intrinsically costly. In this section we analyze
whether assuming effort costs impact our results. Suppose effort is binary, e ∈ {el, eh},
and costly with c(eh) > c(el). Additionally, probabilities are increasing in effort:

pi(αw(t), ew(t)−i,t, eh
it) − pi(αw(t), ew(t)−i,t, el

it) = ∆p ≥ 0 ∀ew(t)−i,t

Then the agent’s problem becomes

max
eit

[pit(αw(t), ew(t),t)E[(qi(St−1 + Wit)]πV
i + E[yi(St−1 + Wit)]πD

i )

+(1 − pit(αw(t), ew(t),t))(E[qi(St−1 + Lit)]πV
i + E[yi(St−1 + Lit)]πD

i )] − c(eit)

Agent i exerts maximum effort in period t if

E [qi(St−1 + Wit)− qi(St−1 + Lit) ]πV
i ≥

≥E [yi(St−1 + Lit) − yi(St−1 + Wit) ]πD
i + c(eh) − c(el)

∆p

This inequality corresponds to (IC), with the last additional term reducing the slack
in the incentives. It should be obvious how Theorem 1 holds under these assumptions.
A more interesting question is whether Theorem 4 holds. Since incentives only affect
the stopping time but not the objective of the planner, the results are maintained
under this specification. However, for any specific tournament the optimal rule T-IC
will stop updating the targeting probabilities at an earlier period t∗ in this model:
the last term reduces slack in the incentives by a constant amount, therefore incentive
compatibility will in general bind earlier in the tournament. While the left-hand side
of the IC constraint is the benefit of exerting effort, the whole right-hand side is the
cost: it’s the sum of explicit cost of effort appropriately scaled and the implicit cost of
effort due to the non-monotonic prize structure.

A.2 Targeting Mechanisms Induce Feasible Allocations
Lemma 6. Every feasible targeting mechanism y ∈ Y induces a probability distribution
over deterministic allocations of the equalizing transfers.

Proof. Consider a vector x ∈ d∗∆n. Any element of the affine simplex d∗∆n can
be decomposed as a convex combination of the vertices of the simplex. The convex
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combination’s coefficients form a probability distribution with the usual interpretation.
But then, notice that evaluating a feasible targeting mechanism at any St yields a
vector y(St) in d∗∆n. We can decompose each y(St) as a probability distribution over
the vertices of the simplex, that is, deterministic allocations of the d∗ transfers.

A.3 Dummies
As mentioned in the introduction, our model accommodates single-person decision
problems, which model numerous governmental aid programs. In certain environments
it is useful to construct dummy agents:

Definition 2. A dummy agent is an agent i such that pit(e−i,t, 0) = pit(e−i,t, 1) for
every t.

A dummy agent’s probability does not depend on his own effort in any history. If
we construct dummies whose probabilities are either 0 or 1 in every period, we can
interpret them as static thresholds against which other agents effectively compete.
Their final score is determined at the very beginning of the tournament, and it is
common knowledge. Incidentally, the generality of the model allows us to capture
absolute performance evaluation by having an agent compete against static dummies.
Absolute performance evaluation corresponds to a tournament with n agents where
n − 1 of them are dummies. In this setting, there is only one agent making choices
that affect the equilibrium outcomes. She is competing against possibly stochastic
thresholds, whose distribution is known at the beginning of the tournament. If we ask
for dummies with probabilities either 1 or 0, we obtain an agent competing against
deterministic thresholds, which models many classical settings of absolute performance
evaluation. All the analysis of the paper applies: particularly, the stopping time will be
determined exclusively by the only active player, since dummies’ incentive constraint
will never bind strictly. Our rule performs well and provides the same insight into the
dynamics of incentives.
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